Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Three Dimensional Diffusion

B. atearo SOS. coli SOS Organic solvents, vapor diffusion Three dimensional crystals EN reconstruction possible to. AO X resolution. X-ray diffraction (powder) observed to 3.5 X resolution i j... [Pg.252]

The eombination in a compact system of an infrared sensor and a laser as excitation source is called a photothermal camera. The surface heating is aehieved by the absorption of the focused beam of a laser. This localisation of the heating permits a three-dimensional heat diffusion in the sample to be examined. The infrared (IR) emission of the surface in the neighbourhood of the heating spot is measured by an infrared detector. A full surface inspection is possible through a video scanning of the excitation and detection spots on the piece to test (figure 1). [Pg.393]

Those exponents which we have discussed expUcitly are identified by equation number in Table 4.3. Other tabulated results are readily rationalized from these. For example, according to Eq. (4.24) for disk (two-dimensional) growth on contact from simultaneous nucleations, the Avrami exponent is 2. If the dimensionality of the growth is increased to spherical (three dimensional), the exponent becomes 3. If, on top of this, the mechanism is controlled by diffusion, the... [Pg.226]

There is an intimate connection at the molecular level between diffusion and random flight statistics. The diffusing particle, after all, is displaced by random collisions with the surrounding solvent molecules, travels a short distance, experiences another collision which changes its direction, and so on. Such a zigzagged path is called Brownian motion when observed microscopically, describes diffusion when considered in terms of net displacement, and defines a three-dimensional random walk in statistical language. Accordingly, we propose to describe the net displacement of the solute in, say, the x direction as the result of a r -step random walk, in which the number of steps is directly proportional to time ... [Pg.628]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

Fig. 1. The postulated flame stmcture for an AP composite propellant, showing A, the primary flame, where gases are from AP decomposition and fuel pyrolysis, the temperature is presumably the propellant flame temperature, and heat transfer is three-dimensional followed by B, the final diffusion flame, where gases are O2 from the AP flame reacting with products from fuel pyrolysis, the temperature is the propellant flame temperature, and heat transfer is three-dimensional and C, the AP monopropellant flame where gases are products from the AP surface decomposition, the temperature is the adiabatic flame temperature for pure AP, and heat transfer is approximately one-dimensional. AP = ammonium perchlorate. Fig. 1. The postulated flame stmcture for an AP composite propellant, showing A, the primary flame, where gases are from AP decomposition and fuel pyrolysis, the temperature is presumably the propellant flame temperature, and heat transfer is three-dimensional followed by B, the final diffusion flame, where gases are O2 from the AP flame reacting with products from fuel pyrolysis, the temperature is the propellant flame temperature, and heat transfer is three-dimensional and C, the AP monopropellant flame where gases are products from the AP surface decomposition, the temperature is the adiabatic flame temperature for pure AP, and heat transfer is approximately one-dimensional. AP = ammonium perchlorate.
There are two types of stmctures one provides an internal pore system comprising interconnected cage-like voids the second provides a system of uniform channels which, in some instances, are one-dimensional and in others intersect with similar channels to produce two- or three-dimensional channel systems. The preferred type has two- or three-dimensional channel systems to provide rapid intracrystalline diffusion in adsorption and catalytic apphcations. [Pg.444]

C. M. Hansen, The Three-Dimensional Solubility Parameter and Solvent Diffusion Coefficient, Danish Technical Press, Copenhagen, Denmark, 1967. [Pg.438]

In view of the facts that three-dimensional coUoids are common and that Brownian motion and gravity nearly always operate on them and the dispersiag medium, a comparison of the effects of particle size on the distance over which a particle translationaUy diffuses and that over which it settles elucidates the coUoidal size range. The distances traversed ia 1 h by spherical particles with specific gravity 2.0, and suspended ia a fluid with specific gravity 1.0, each at 293 K, are given ia Table 1. The dashed lines are arbitrary boundaries between which the particles are usuaUy deemed coUoidal because the... [Pg.393]

Matching the flow between the impeller and the diffuser is complex because the flow path changes from a rotating system into a stationary one. This complex, unsteady flow is strongly affected by the jet-wake of the flow leaving the impeller, as seen in Figure 6-29. The three-dimensional boundary layers, the secondary flows in the vaneless region, and the flow separation at the blades also affects the overall flow in the diffuser. [Pg.245]

A continuous lipidic cubic phase is obtained by mixing a long-chain lipid such as monoolein with a small amount of water. The result is a highly viscous state where the lipids are packed in curved continuous bilayers extending in three dimensions and which are interpenetrated by communicating aqueous channels. Crystallization of incorporated proteins starts inside the lipid phase and growth is achieved by lateral diffusion of the protein molecules to the nucleation sites. This system has recently been used to obtain three-dimensional crystals 20 x 20 x 8 pm in size of the membrane protein bacteriorhodopsin, which diffracted to 2 A resolution using a microfocus beam at the European Synchrotron Radiation Facility. [Pg.225]

Compact air jets are formed by cylindrical tubes, nozzles, and square or rectangular openings with a small aspect ratio that are unshaded or shaded by perforated plates, grills, etc. Compact air jets are three-dimensional and axisymmetric at least at some distance from the diffuser opening. The maximum velocity in the cross-section of the compact jet is on the axis. [Pg.447]

J mol ). This is additional evidence in favor of rate limitation by inner diffusion. However, the same reaction in the presence of Dowex-50, which has a more open three-dimensional network, gave an activation energy of 44800 J mol , and closely similar values were obtained for the hydrolysis of ethyl acetate [29] and dimethyl seb-acate [30]. The activation energy for the hydrolysis of ethyl acetate on a macroreticular sulphonated cationic exchanger [93] is 3566 J mol . For the hydrolysis of ethyl formate in a binary system, the isocomposition activation energy (Ec) [28,92] tends to decrease as the solvent content increases, while for solutions of the same dielectric constant, the iso-dielectric activation energy (Ed) increases as the dielectric constant of the solvent increases (Table 6). [Pg.779]

Ionic transport in solid electrolytes and electrodes may also be treated by the statistical process of successive jumps between the various accessible sites of the lattice. For random motion in a three-dimensional isotropic crystal, the diffusivity is related to the jump distance r and the jump frequency v by [3] ... [Pg.532]

In the first case, there is only partial instead of complete long-range three-dimensional order. Fiber spectrum features are diffuse haloes (besides sharp reflections) on the layer lines. [Pg.186]

The account of the formal derivation of kinetic expressions for the reactions of solids given in Sect. 3 first discusses those types of behaviour which usually generate three-dimensional nuclei. Such product particles may often be directly observed. Quantitative measurements of rates of nucleation and growth may even be possible, thus providing valuable supplementary evidence for the analysis of kinetic data. Thereafter, attention is directed to expressions based on the existence of diffuse nuclei or involving diffusion control such nuclei are not susceptible to quantitative... [Pg.48]

The outer layer (beyond the compact layer), referred to as the diffuse layer (or Gouy layer), is a three-dimensional region of scattered ions, which extends from the OHP into the bulk solution. Such an ionic distribution reflects the counterbalance between ordering forces of the electrical field and the disorder caused by a random thermal motion. Based on the equilibrium between these two opposing effects, the concentration of ionic species at a given distance from the surface, C(x), decays exponentially with the ratio between the electro static energy (zF) and the thermal energy (R 7). in accordance with the Boltzmann equation ... [Pg.19]

A more rigorous treatment takes into account the hydrodynamic characteristics of the flowing solution. Expressions for the limiting currents (under steady-state conditions) have been derived for various electrodes geometries by solving the three-dimensional convective diffusion equation ... [Pg.91]

S.3.2 Sol-Gel Encapsulation of Reactive Species Another new and attractive route for tailoring electrode surfaces involves the low-temperature encapsulation of recognition species within sol-gel films (41,42). Such ceramic films are prepared by the hydrolysis of an alkoxide precursor such as, Si(OCH3)4 under acidic or basic condensation, followed by polycondensation of the hydroxylated monomer to form a three-dimensional interconnected porous network. The resulting porous glass-like material can physically retain the desired modifier but permits its interaction with the analyte that diffuses into the matrix. Besides their ability to entrap the modifier, sol-gel processes offer tunability of the physical characteristics... [Pg.120]

Interconnect. Three-dimensional structures require interconnections between the various levels. This is achieved by small, high aspect-ratio holes that provide electrical contact. These holes include the contact fills which connect the semiconductor silicon area of the device to the first-level metal, and the via holes which connect the first level metal to the second and subsequent metal levels (see Fig. 13.1). The interconnect presents a major fabrication challenge since these high-aspect holes, which may be as small as 0.25 im across, must be completely filled with a diffusion barrier material (such as CVD titanium nitride) and a conductor metal such as CVD tungsten. The ability to fill the interconnects is a major factor in selecting a thin-film deposition process. [Pg.349]

The oxidation or reduction of a substrate suffering from sluggish electron transfer kinetics at the electrode surface is mediated by a redox system that can exchange electrons rapidly with the electrode and the substrate. The situation is clear when the half-wave potential of the mediator is equal to or more positive than that of the substrate (for oxidations, and vice versa for reductions). The mediated reaction path is favored over direct electrochemistry of the substrate at the electrode because, by the diffusion/reaction layer of the redox mediator, the electron transfer step takes place in a three-dimensional reaction zone rather than at the surface Mediation can also occur when the half-wave potential of the mediator is on the thermodynamically less favorable side, in cases where the redox equilibrium between mediator and substrate is disturbed by an irreversible follow-up reaction of the latter. The requirement of sufficiently fast electron transfer reactions of the mediator is usually fulfilled by such revemible redox couples PjQ in which bond and solvate... [Pg.61]

MC simulations and semianalytical theories for diffusion of flexible polymers in random porous media, which have been summarized [35], indicate that the diffusion coefficient in random three-dimensional media follows the Rouse behavior (D N dependence) at short times, and approaches the reptation limit (D dependence) for long times. By contrast, the diffusion coefficient follows the reptation limit for a highly ordered media made from infinitely long rectangular rods connected at right angles in three-dimensional space (Uke a 3D grid). [Pg.579]


See other pages where Three Dimensional Diffusion is mentioned: [Pg.89]    [Pg.769]    [Pg.769]    [Pg.769]    [Pg.416]    [Pg.229]    [Pg.334]    [Pg.89]    [Pg.769]    [Pg.769]    [Pg.769]    [Pg.416]    [Pg.229]    [Pg.334]    [Pg.213]    [Pg.386]    [Pg.539]    [Pg.132]    [Pg.479]    [Pg.68]    [Pg.420]    [Pg.960]    [Pg.869]    [Pg.298]    [Pg.309]    [Pg.261]    [Pg.74]    [Pg.273]    [Pg.425]    [Pg.35]    [Pg.212]    [Pg.358]    [Pg.377]    [Pg.570]   
See also in sourсe #XX -- [ Pg.180 , Pg.187 , Pg.191 , Pg.199 , Pg.207 , Pg.224 , Pg.225 , Pg.226 , Pg.231 ]




SEARCH



Quasi-Three-Dimensional Diffusion in Membranes

Three-dimensional diffusion General

Three-dimensional diffusion coefficient

Three-dimensional diffusion in a spherically symmetric system

Three-dimensional lattice diffusion

© 2024 chempedia.info