Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane proteins bacteriorhodopsin

Protein Computers. The membrane protein bacteriorhodopsin holds great promise as a memory component in future computers. This protein has the property of adopting different states in response to varying optical wavelengths. Its transition rates are very rapid. Bacteriorhodopsin could be used both in the processor and storage, making a computer smaller, faster, and more economical than semiconductor devices (34). [Pg.215]

A continuous lipidic cubic phase is obtained by mixing a long-chain lipid such as monoolein with a small amount of water. The result is a highly viscous state where the lipids are packed in curved continuous bilayers extending in three dimensions and which are interpenetrated by communicating aqueous channels. Crystallization of incorporated proteins starts inside the lipid phase and growth is achieved by lateral diffusion of the protein molecules to the nucleation sites. This system has recently been used to obtain three-dimensional crystals 20 x 20 x 8 pm in size of the membrane protein bacteriorhodopsin, which diffracted to 2 A resolution using a microfocus beam at the European Synchrotron Radiation Facility. [Pg.225]

Gram-negative bacteria are surrounded by two membranes, an inner plasma membrane and an outer membrane. These are separated by a periplasmic space. Most plasma membrane proteins contain long, continuous sequences of about 20 hydrophobic residues that are typical of transmembrane a helices such as those found in bacteriorhodopsin. In contrast, most outer membrane proteins do not show such sequence patterns. [Pg.228]

ITowever, membrane proteins can also be distributed in nonrandom ways across the surface of a membrane. This can occur for several reasons. Some proteins must interact intimately with certain other proteins, forming multisubunit complexes that perform specific functions in the membrane. A few integral membrane proteins are known to self-associate in the membrane, forming large multimeric clusters. Bacteriorhodopsin, a light-driven proton pump protein, forms such clusters, known as purple patches, in the membranes of Halobacterium halobium (Eigure 9.9). The bacteriorhodopsin protein in these purple patches forms highly ordered, two-dimensional crystals. [Pg.266]

Indeed, hydrophilic N- or C-terminal ends and loop domains of these membrane proteins exposed to aqueous phases are able to undergo rapid or intermediate motional fluctuations, respectively, as shown in the 3D pictures of transmembrane (TM) moieties of bacteriorhodopsin (bR) as a typical membrane protein in the purple membrane (PM) of Halobacterium salinarum.176 178 Structural information about protein surfaces, including the interhelical loops and N- and C-terminal ends, is completely missing from X-ray data. It is also conceivable that such pictures should be further modified, when membrane proteins in biologically active states are not always present as oligomers such as dimer or trimer as in 2D or 3D crystals but as monomers in lipid bilayers. [Pg.45]

In this paper, we will describe one of examples, where artificial archaeal glycolipids are applied to the construction of nano-devices containing energy-conversion membrane proteins, by employing the phytanyl-chained glycolipid we have recently developed, i.e., l,3-di-o-phytanyl-2-o- ((3-D-maltotriosyl) glycerol (Mab (Phyt)2, Fig. 1) [16,17] and natural proton pump, bacteriorhodopsin (BR) derived from purple membranes of the extremely halophilic archaeon Halobacterium salinarium S9 [18],... [Pg.144]

A nice example of an indirect structure determination using the trNOE method is the study of the conformation of a loop of the membrane protein bacteriorhodopsin (BR) [28]. Antibodies were raised against BR, and subsequently the complex of a heptapetide derived from BR was studied in complex with the antibody by trNOE. The bound conformation is a reasonably good representation of the conformation of the peptide in its native state in BR. [Pg.361]

Bacteriorhodopsin, see Purple membrane protein Bence-Jones protein, see Immunoglobulin... [Pg.278]

Thus, the important question of the secondary structure of the transmembrane elements can only be addressed with models and by structural comparison with other transmembrane proteins for which the structure has been resolved. Detailed information on the structure of transmembrane elements is available for the photoreaction center of Rhodopseudomonas viridis (review Deisenhofer and Michel, 1989), cytochrome c oxidase (Iwata et al., 1995) and the OmpF porin of E. coli (Cowan et al., 1992 Fig. 5.3), amongst others. In addition, high resolution electron microscopic investigations and X-ray studies of bacteriorhodopsin, a light-driven ion pump with seven transmembrane elements, have yielded valuable information on the structure and configuration of membrane-spaiming elements (Henderson et al., 1990 Kimura et al., 1997 Pebay-Peyrula et al., 1997 Fig. 5.4). With the successful crystallization of the photoreaction center of Rhodopseudomonas viridis, a membrane protein was displayed at atomic resolution for the first time (Deisenhofer et al., 1985). The membrane-... [Pg.177]

The photosynthetic reaction center of a purple bacterium was the first membrane protein structure solved by crystallography. Although a more complex membrane protein than bacteriorhodopsin, it is constructed on the same principles. The reaction center has four protein... [Pg.375]

Integral membrane proteins. Membrane proteins are hard to crystallize178 and precise structures are known for only a few of them.179-181 A large fraction of all of the integral membrane proteins contain one or more membrane-spanning helices with loops of peptide chain between them. Folded domains in the cytoplasm or on the external membrane surface may also be present. The best-known structure of a transmembrane protein is that of the 248-residue bacteriorhodopsin. It consists of seven helical segments that span the plasma membrane (Fig. 23-45) and serves as a light-activated proton pump. Other proteins with similar structures act as hormone receptors in eukaryotic membranes. A seven-helix protein embedded in a membrane is depicted in Fig. 8-5 and also, in more detail, in Fig. 11-6. [Pg.401]

The incorporation of a membrane protein into a polymerizable liposome from (22) was demonstrated by R. Pabst n9). The chromoprotein bacteriorhodopsin — a light-driven proton pump from halophilic bacteria — was incorporated into monomeric sulfolipid liposomes by ultrasonication. The resulting proteoliposomes were poly-... [Pg.57]

A three-dimensional structure also has been elucidated for bacteriorhodopsin, an integral membrane protein of the halophilic (salt-loving) bacterium Halobacterium halobium. This protein has been studied intensively because of its remarkable activity as a light-driven proton pump (see chapter 14). It forms well-ordered arrays in two-dimensional sheets that can be studied by electron diffraction. Measurements of the diffraction patterns show clearly that bacteriorhodopsin has seven transmembrane helices (fig. 17.12). [Pg.390]

A model for the structure of bacteriorhodopsin, a membrane protein from Halobacterium halobium. The protein has seven membrane-spanning segments connected by shorter stretches of hydrophilic amino acid residues. [Pg.391]

For an example of electron diffraction in structure determination of a membrane protein, see Y. Kimura, D. G. Vassylyev, A. Miyazawa, A. Kidera, M. Matsushima, K. Mitsuoka, K. Murata, T. Hirai, and Y. Fujiyoshi, Surface of bacteriorhodopsin revealed by high-resolution electron crystallography, Nature 389,206-211, 1997. [Pg.209]

Fig. 1. Integral membrane proteins, (a) Single membrane-spanning region (e.g. glycophorin) (b) multiple membrane-spanning regions (e.g. bacteriorhodopsin). Fig. 1. Integral membrane proteins, (a) Single membrane-spanning region (e.g. glycophorin) (b) multiple membrane-spanning regions (e.g. bacteriorhodopsin).

See other pages where Membrane proteins bacteriorhodopsin is mentioned: [Pg.20]    [Pg.20]    [Pg.61]    [Pg.532]    [Pg.210]    [Pg.226]    [Pg.231]    [Pg.116]    [Pg.272]    [Pg.272]    [Pg.161]    [Pg.83]    [Pg.126]    [Pg.187]    [Pg.143]    [Pg.37]    [Pg.184]    [Pg.156]    [Pg.252]    [Pg.256]    [Pg.7]    [Pg.9]    [Pg.95]    [Pg.65]    [Pg.139]    [Pg.155]    [Pg.155]    [Pg.375]    [Pg.377]    [Pg.377]    [Pg.384]    [Pg.553]    [Pg.324]    [Pg.402]    [Pg.124]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Membrane-bound protein, bacteriorhodopsin

© 2024 chempedia.info