Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detectors tandem mass spectrometry

Gentili, A. Caretti, F. 2011. Evaluation of a method based on liquid chromatography-diode array detector-tandem mass spectrometry for a rapid and comprehensive characterization of the fat-soluble vitamin and carotenoid profile of selected plant foods. J. Chromatogr. A. 1218 684-697. [Pg.381]

Like the UV detector, the mass spectrometer may be employed as either a general detector, when full-scan mass spectra are acquired, or as a specific detector, when selected-ion monitoring (see Section 3.5.2.1) or tandem mass spectrometry (MS-MS) (see Section 3.4.2) are being used. [Pg.34]

On the other hand, if only specific GC detectors, e.g. the electron capture, nitrogen-phosphorus or flame photometric detectors, are tested, the argument of lack of GC method sensitivity is not acceptable. In most cases mass spectrometric detectors provide the sensitivity and selectivity needed. Unfortunately, tandem mass spectrometry (MS/MS) or MS" detectors for GC are still not widely used in official laboratories, and therefore these techniques are not always accepted for enforcement methods. [Pg.108]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

MS detection does not necessarily require as highly resolved GC separations as in the case of selective detectors because the likelihood of an overlapping mass spectral peak among pesticides with the same retention time is less than the likelihood of an overlapping peak from the same element. Unfortunately, this advantage cannot always be optimized because SIM and current gas chromatography/tandem mass spectrometry (GC/MS/MS) methods, it is difficult to devise sequential SIM or MS/MS retention time windows to achieve fast GC separations for approximately > 50 analytes in a single method. [Pg.762]

Ethylenethiourea (ETU) is a toxic decomposition product/metabolite of alky-lenebis(dithiocarbamates). This compound could be generated during processing of treated crops at elevated temperature. Different chromatographic methods to determine the residue levels of ETU have been published. After extraction with methanol, clean-up on a Gas-Chrom S/alumina column and derivatization (alkylation) with bro-mobutane, ETU residues can be determined by GC with a flame photometric detector in the sulfur mode. Alternatively, ETU residues can also be determined by an HPLC method with UV detection at 240 nm or by liquid chromatography/mass spectrometry (LC/MS) or liquid chromatography/tandem mass spectrometry (LC/MS/MS) (molecular ion m/z 103). ... [Pg.1091]

Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17. Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17.
Natural products and natural-like compounds, generally coming from microbes, plants, sponges and animals [2, 3] may be fully identified and quantified by means of modem and advanced analytical techniques, such as high-performance liquid chromatography (HPLC) coupled to various detectors - from the most common UV/Vis to mass spectrometry and tandem mass spectrometry (HPLC-MS and HPLC-MS/MS). The role of MS is to provide quantitative and qualitative information about mixtures separated by liquid chromatography [4],... [Pg.48]

In experiments where a higher degree of sensitivity and selectivity is required, fluorescence and mass-selective detectors have been applied. Picomole limits of detection offered by fluorescence makes it ideal for routine analysis requiring high sensitivity. Mass spectrometry has also proven to be both a sensitive and efficient way to identify numerous chlorophyll derivatives (unitf4.s). van Breemen et al. (1991) utilized both fast atom bombardment (FAB) and tandem mass spectrometry (MS/MS) for the structural characterization and mass determination of numerous deriva-... [Pg.929]

The more advanced instrumental methods of analysis, including GC, for the detection and identification of expls are presented (Ref 90) Pyrolysis of expls in tandem with GC/MS was used for the identification of contaminant expls in the environment (Ref 108). Isomer vapor impurities of TNT were characterized by GC-electron capture detector and mass spectrometry (Ref 61). Volatile impurities in TNT and Comp B were analyzed using a GC/MS the GC was equipped with electron capture and flame ionization detectors (Ref 79). The vapors evolved from mines, TNT, acetone, toluene, cyclohexanone and an organosilicon, were analyzed by GC/MS (Ref 78). Red water produced by the sellite purification of crude TNT was analyzed by GC/MS for potentially useful organic compds, 2,4-dinitrotoluene, 3- and 4-sulfonic acids (Ref 124). Various reports were surveyed to determine which methods, including GC/MS, are potential candidates for detection of traces of TNT vapors emitted from land mines factors influencing transportability of TNT vapors thru soil to soil/air interface are dis-... [Pg.783]

Martens-Lobenhoffer et al. [119] used chiral HPLC-atmospheric pressure photoionization tandem mass-spectrometric method for the enantio-selective quantification of omeprazole and its main metabolites in human serum. The method features solid-phase separation, normal phase chiral HPLC separation, and atmospheric pressure photoionization tandem mass spectrometry. The internal standards serve stable isotope labeled omeprazole and 5-hydroxy omeprazole. The HPLC part consists of Agilent 1100 system comprising a binary pump, an autosampler, a thermo-stated column component, and a diode array UV-VIS detector. The enantioselective chromatographic separation took place on a ReproSil Chiral-CA 5 ym 25 cm x 2 mm column, protected by a security guard system, equipped with a 4 mm x 2-mm silica filter insert. The analytes were detected by a Thermo Scientific TSQ Discovery Max triple quadrupole mass spectrometer, equipped with an APPI ion source with a... [Pg.232]

Specificity. The potentially very high analytical specificity of tandem mass spectrometry as HPLC detector results from using the molecular mass of the analyte and its specific disintegration behaviour as detection principle. [Pg.111]

Capillary Electrophoresis Chemical Warfare Agents Chemical Weapons Convention Deuterated L-Alanine Triglycine Sulfate Dimethyl Ethylphosphonate Dimethyl Isopropylphosphonate Dimethyl Methylphosphonate Dimethyl Propylphosphonate Dimercaptotoluene Diffuse Reflectance Infrared Fourier Transform Functional Group Chromatograms Flame-Ionization Detector Fourier Transform Infrared Spectroscopy Gas Chromatography Gas Chromatography/Chemical Ionization/Mass Spectrometry Gas Chromatography/Chemical Ionization/Tandem Mass Spectrometry... [Pg.381]


See other pages where Detectors tandem mass spectrometry is mentioned: [Pg.542]    [Pg.62]    [Pg.104]    [Pg.4]    [Pg.25]    [Pg.27]    [Pg.317]    [Pg.576]    [Pg.27]    [Pg.25]    [Pg.31]    [Pg.393]    [Pg.46]    [Pg.12]    [Pg.414]    [Pg.25]    [Pg.19]    [Pg.348]    [Pg.199]    [Pg.476]    [Pg.622]    [Pg.786]    [Pg.360]    [Pg.249]    [Pg.404]    [Pg.363]    [Pg.450]    [Pg.50]    [Pg.135]    [Pg.137]    [Pg.195]   
See also in sourсe #XX -- [ Pg.243 , Pg.244 , Pg.245 , Pg.246 , Pg.247 , Pg.248 , Pg.249 , Pg.250 , Pg.251 , Pg.252 , Pg.253 , Pg.254 , Pg.261 , Pg.292 , Pg.368 ]




SEARCH



Detector spectrometry

Mass detector

Mass spectrometry detectors

Mass spectrometry tandem

Tandem spectrometry

© 2024 chempedia.info