Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dependent protein kinases

We have previously calculated conformational free energy differences for a well-suited model system, the catalytic subunit of cAMP-dependent protein kinase (cAPK), which is the best characterized member of the protein kinase family. It has been crystallized in three different conformations and our main focus was on how ligand binding shifts the equilibrium among these ([Helms and McCammon 1997]). As an example using state-of-the-art computational techniques, we summarize the main conclusions of this study and discuss a variety of methods that may be used to extend this study into the dynamic regime of protein domain motion. [Pg.68]

Fig. 1. Superposition of three crystal structures of cAMP-dependent protein kinase that show the protein in a closed conformation (straight line), in an intermediate conformation (dashed line), and in an open conformation (broken line). The structures were superimposed on the large lobe. In three locations, arrows identify corresponding amino acid positions in the small lobe. Fig. 1. Superposition of three crystal structures of cAMP-dependent protein kinase that show the protein in a closed conformation (straight line), in an intermediate conformation (dashed line), and in an open conformation (broken line). The structures were superimposed on the large lobe. In three locations, arrows identify corresponding amino acid positions in the small lobe.
Fig. 2. Conformational free energy of closed, intermediate and open protein kinase conformations. cAPK indicates the unbound form of cAMP-dependent protein kinase, cAPKiATP the binary complex of cAPK with ATP, cAPKiPKP the binary complex of cAPK with the peptide inhibitor PKI(5-24), and cAPK PKI ATP the ternary complex of cAPK with ATP and PKI(5-24). Shown are averaged values for the three crystal structures lATP.pdb, ICDKA.pdb, and ICDKB.pdb. All values have been normalized with respect to the free energy of the closed conformations. Fig. 2. Conformational free energy of closed, intermediate and open protein kinase conformations. cAPK indicates the unbound form of cAMP-dependent protein kinase, cAPKiATP the binary complex of cAPK with ATP, cAPKiPKP the binary complex of cAPK with the peptide inhibitor PKI(5-24), and cAPK PKI ATP the ternary complex of cAPK with ATP and PKI(5-24). Shown are averaged values for the three crystal structures lATP.pdb, ICDKA.pdb, and ICDKB.pdb. All values have been normalized with respect to the free energy of the closed conformations.
The procedure is computationally efficient. For example, for the catalytic subunit of the mammalian cAMP-dependent protein kinase and its inhibitor, with 370 residues and 131 titratable groups, an entire calculation requires 10 hours on an SGI 02 workstation with a 175 MHz MIPS RIOOOO processor. The bulk of the computer time is spent on the FDPB calculations. The speed of the procedure is important, because it makes it possible to collect results on many systems and with many different sets of parameters in a reasonable amount of time. Thus, improvements to the method can be made based on a broad sampling of systems. [Pg.188]

Left side of Fig. 4 shows a ribbon model of the catalytic (C-) subunit of the mammalian cAMP-dependent protein kinase. This was the first protein kinase whose structure was determined [35]. Figure 4 includes also a ribbon model of the peptide substrate, and ATP (stick representation) with two manganese ions (CPK representation). All kinetic evidence is consistent with a preferred ordered mechanism of catalysis with ATP binding proceeding substrate binding. [Pg.190]

Taylor, S. S., Radzio-Andzelm, E. Cyclic AMP-dependent protein kinase. In Protein Kinases, Woodgett, J. R., editor, IRL Press, Oxford, 1994. [Pg.196]

Karlsson, R., Zheng, J., Zheng, N.-H., Taylor, S. S., Sowadski, J. M. Structure of the mamalian catalytic subunit of cAMP-dependent protein kinase and an inhibitor peptide displays an open conformation. Acta Cryst. D 49 (1993) 381-388. [Pg.196]

Steinberg, R. A. A kinase-negative mutant of s49 mouse lymphoma cells is defective in posttranslational maturation of catalytic subunitof cyclic amp-dependent protein kinase. Mol. Cell Biol. 11 (1991) 705-712. [Pg.196]

In addition, vinpocetine selectively inhibits a specific calcium, calmodulin-dependent cycHc nucleotide phosphodiesterase (PDF) isozyme (16). As a result of this inhibition, cycHc guanosine 5 -monophosphate (GMP) levels increase. Relaxation of smooth muscle seems to be dependent on the activation of cychc GMP-dependent protein kinase (17), thus this property may account for the vasodilator activity of vinpocetine. A review of the pharmacology of vinpocetine is available (18). [Pg.93]

A number of kinase structures have been determined in various catalytic states. For example, structures of the cyclin-dependent kinase, CDK2, in its inactive state and in a partially active state after cyclin binding have been discussed in Chapter 6. The most thoroughly studied kinase is the cyclic AMP-dependent protein kinase the structure of both the inactive and the active... [Pg.277]

Myristic acid may be linked via an amide bond to the a-amino group of the N-terminal glycine residue of selected proteins (Figure 9.18). The reaction is referred to as A -myristoylation and is catalyzed by myristoyl—CoAtprolein N-myris-toyltransferase, known simply as NMT. A -Myristoyl-anchored proteins include the catalytic subunit of cAMP-dependent protein kinase, the ppSff tyrosine kinase, the phosphatase known as calcineurin B, the a-subunit of G proteins (involved in GTP-dependent transmembrane signaling events), and the gag proteins of certain retroviruses, including the FHV-l virus that causes AIDS. [Pg.275]

Cyclic AMP-dependent protein kinase is shown complexed with a pseudosubstrate peptide (red). This complex also includes ATP (yellow) and two Mn ions (violet) bound at the active site. [Pg.466]

FIGURE 15.7 Cyclic AMP-dependent protein kinase (also known as PKA) is a 150- to l70-kD R9C9 tetramer in mammalian cells. The two R (regulatory) subunits bind cAMP ( = 3 X 10 M) cAMP binding releases the R subunits from the C (catalytic) subunits. C subunits are enzymatically active as monomers. [Pg.468]

Pyruvate kinase possesses allosteric sites for numerous effectors. It is activated by AMP and fructose-1,6-bisphosphate and inhibited by ATP, acetyl-CoA, and alanine. (Note that alanine is the a-amino acid counterpart of the a-keto acid, pyruvate.) Furthermore, liver pyruvate kinase is regulated by covalent modification. Flormones such as glucagon activate a cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the enzyme. The phos-phorylated form of pyruvate kinase is more strongly inhibited by ATP and alanine and has a higher for PEP, so that, in the presence of physiological levels of PEP, the enzyme is inactive. Then PEP is used as a substrate for glucose synthesis in the pathway (to be described in Chapter 23), instead... [Pg.630]

Stimulation of glycogen breakdown involves consumption of molecules of ATP at three different steps in the hormone-sensitive adenylyl cyclase cascade (Figure 15.19). Note that the cascade mechanism is a means of chemical amplification, because the binding of just a few molecules of epinephrine or glucagon results in the synthesis of many molecules of cyclic / MP, which, through the action of c/ MP-dependent protein kinase, can activate many more molecules of phosphorylase kinase and even more molecules of phosphorylase. For example, an extracellular level of 10 to 10 M epinephrine prompts the for-... [Pg.761]

Earner, J., 1990. Insulin and the stimulation of glycogen synthesis The road from glycogen structure to glycogen synthase to cyclic AMP-dependent protein kinase to insulin mediators. Advances in Enzymology 63 173-231. [Pg.774]

Phosphorylation by cAMP-dependent protein kinases inactivates the reductase. This inactivation can be reversed by two specific phosphatases (Figure 25.33). [Pg.834]

Group II assays consist of those monitoring cellular second messengers. Thus, activation of receptors to cause Gs-protein activation of adenylate cyclase will lead to elevation of cytosolic or extracellularly secreted cyclic AMP. This second messenger phosphorylates numerous cyclic AMP-dependent protein kinases, which go on to phosphorylate metabolic enzymes and transport and regulatory proteins (see Chapter 2). Cyclic AMP can be detected either radiometrically or with fluorescent probe technology. [Pg.83]

AKAPs are cyclic AMP-dependent protein kinase (PKA)-anchoring proteins, a family of about 30 proteins anchoring PKA at subcellular sites in close vicinity to a certain substrate. [Pg.51]

AMPK can also be activated by a Ca2+-mediated pathway involving phosphorylation at Thr-172 by the Ca2+/calmodulin-dependent protein kinase, CaMKK 3. CaMKKa and CaMKK 3 were discovered as the upstream kinase for the calmodulin-dependent protein kinases-1 and -IV they both activate AMPK in a Ca2+/ calmodulin-dependent manner in cell-free assays, although CaMKK 3 appears to much more active against AMPK in intact cells. Expression of CaMKKa and CaMKK(3 primarily occurs in neural tissues, but CaMKKp is also expressed in some other cell types. Thus, the Ca2+-mediated pathway for AMPK activation has now been shown to occur in response to depolarization in rat neuronal tissue, in response to thrombin (acting via a Gq-coupled receptor) in endothelial cells, and in response to activation of the T cell receptor in T cells. [Pg.71]

CREB stands for cyclic-AMP response element (CRE) binding protein and is a transcription factor. When phosphorylated by cyclic AMP- and cyclic GMP-dependent Protein Kinases or other protein kinases it binds to gene promoters that contain a specific binding site. After binding, the respective transcription activity is modulated. [Pg.396]


See other pages where Dependent protein kinases is mentioned: [Pg.66]    [Pg.196]    [Pg.275]    [Pg.449]    [Pg.279]    [Pg.281]    [Pg.488]    [Pg.284]    [Pg.106]    [Pg.271]    [Pg.466]    [Pg.468]    [Pg.478]    [Pg.478]    [Pg.479]    [Pg.28]    [Pg.29]    [Pg.31]    [Pg.297]    [Pg.298]    [Pg.322]    [Pg.347]    [Pg.398]    [Pg.399]    [Pg.399]   
See also in sourсe #XX -- [ Pg.281 ]




SEARCH



3- Phosphoinositide-dependent protein kinase

AMP-dependent protein kinase

AMP-dependent protein kinase in the adrenal cortex

CAMP-dependent Protein Kinase A

CAMP-dependent protein kinase

CAMP-dependent protein kinase (PKA

CAMP-dependent protein kinase activation

CAMP-dependent protein kinase pathway

CGMP-dependent protein kinase (PKG

Ca" + /calmodulin -dependent protein kinase

Ca-CaM-dependent protein kinase

Ca2+- dependent protein kinase

Ca2+/CAM-dependent protein kinases

Ca2+/calmodulin-dependent protein kinases

CaM-dependent protein kinases

Calcium -dependent protein kinase

Calcium/calmodulin-dependent protein kinase

Calcium/calmodulin-dependent protein kinase II

Calcium/calmodulin-dependent protein kinase type

Calcium/calmodulin-dependent protein kinases activation

Calcium/calmodulin-dependent protein kinases activity regulation

Calcium/calmodulin-dependent protein kinases function

Calcium/calmodulin-dependent protein kinases inhibition

Calcium/calmodulin-dependent protein kinases myosin light chain kinase phosphorylation

Calcium/calmodulin-dependent protein kinases subunits

Calmodulin dependent protein kinase II (CaMKII

Calmodulin-dependent protein kinase

Calmodulin-dependent protein kinase kinases

Calmodulin-dependent protein kinase kinases CaMKK)

Cancer cyclin-dependent protein kinases

Cyclic AMP-dependent protein kinase

Cyclic AMP-dependent protein kinase A

Cyclic AMP-dependent protein kinase activation

Cyclic GMP-dependent protein kinase

Cyclic adenosine monophosphate protein kinase dependent

Cyclic dependent protein kinase

Cyclic nucleotide-dependent protein kinases

Cyclin-dependent protein kinases

Cyclin-dependent protein kinases (CDK

Cyclin-dependent protein kinases (CDKs

Cyclin-dependent protein kinases (CDKs change

Cyclin-dependent protein kinases (CDKs domains

DNA-dependent protein kinase catalytic subunit

DNA-dependent protein kinases

Dependence and protein kinase

Double stranded RNA-dependent protein kinase

DsRNA-dependent protein kinase

GMP-dependent protein kinase

Insulin-dependent protein kinases

Kinases cAMP-dependent protein kinase

Mitogen-activated protein kinase transcription factor signal-dependent

PDK1 (phosphoinositide-dependent protein kinase

Phosphorylation by cAMP-dependent protein kinase

Protein dependence

Protein inhibit cyclin-dependent kinase

Protein kinase cGMP-dependent

Protein kinase nucleotide-dependent effects

Protein kinase, cAMP-dependent active sit

Signal transduction cAMP-dependent protein kinase activation

© 2024 chempedia.info