Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decaffeination of coffee

Trichloroethylene was approved for use for many years as an extraction solvent for foods. In late 1977, the Eood and Dmg Administration (EDA) harmed its use as a food additive, direcdy or indirecdy, prohibiting the use in hop extraction, decaffeination of coffee, isolation of spice oleoresins, and other apphcations. The EDA also harmed the use of trichloroethylene in cosmetic and dmg products (23). [Pg.25]

One of the most widely established processes using SCCO2 is the decaffeination of coffee. Prior to widespread use of this process in the 1980s the preferred extraction solvent was dichloromethane. The potential adverse health effects of chlorinated materials were realized at this time and, although there was no direct evidence of any adverse health effects being caused by any chlorinated residues in decaffeinated coffee there was always the risk, highlighted in some press scare stories. Hence the current processes offer health, environmental and economic advantages. [Pg.138]

Decaffeination of Coffee and Tea This application is driven by the environmental acceptability and nontoxicity of CO2 as well as by the ability to tailor the extraction with the adjustable solvent strength. It has been practiced industrially for more than two decades. Caffeine may be extracted from green coffee beans, and the aroma is developed later by roasting. Various methods have been proposed for recovery of the caffeine, including washing with water and adsorption. [Pg.16]

Solvent-assisted decaffeination of coffee can result in residues of solvent reaching the consumer.208 The use of chlorinated hydrocarbon solvents such as chloroform,209 methylene chloride, trichloroethylene,208 and difluoromonochloromethane (Freon),210 will probably be replaced by compounds already found in roasted coffee. The use of an ethyl acetate and 2-butanone mixture leaves a 26-ppm residue in green coffee, but zero residue in roasted coffee.211 Other solvent compounds used or suggested for coffee improvement or decaffeination include propane, butane,212 carbon dioxide,213 214 acetone215 dimethyl succinate,2161,1-dimethoxymethane, and 1,1-dimethoxyethane.217 Of all these, supercritical carbon dioxide, ethyl acetate, and methylene chloride are the solvents most used currently in decaffeination processes. [Pg.157]

A recent development in liquid-liquid extraction has been the use of supercritical fluids as the extraction-solvent. Carbon dioxide at high pressure is the most commonly used fluid. It is used in processes for the decaffeination of coffee and tea. The solvent can be recovered from the extract solution as a gas, by reducing the pressure. Super critical extraction processes are discussed by Humphrey and Keller (1997). [Pg.624]

Extraction processes for natural products including the decaffeination of coffee and tea and the isolation of nutraceuticals, flavors, and fragrances... [Pg.156]

Lack A and Seidlitz H. 1993. Commercial scale decaffeination of coffee and tea using supercritical CCb. In King MB and Bott TR, editors. Extraction of natural products using near-critical solvents. Glasgow Blackie Academic, p. 101—139. [Pg.267]

The article Caffeine in coffee its removal why and how by K. Ramalakshmi and B. Raghavan in Critical Reviews in Food Science and Nutrition, 1999, 39, 441 provides an in-depth survey of the physicochemical factors underlying decaffeination of coffee with supercritical CO2. [Pg.545]

Supercritical fluids (SCFs) are best known through their use for the decaffeination of coffee, which employs supercritical carbon dioxide (scCC ). In this chapter, we will demonstrate that SCFs also have many properties that make them interesting and useful reaction media. Firstly, the physical properties of SCFs will be explained, then the specialist equipment needed for carrying out reactions under high temperatures and pressures will be described. Finally, we will discuss issues relevant to the use of SCFs as solvents for reactions. [Pg.131]

SCFs will find applications in high cost areas such as fine chemical production. Having said that, marketing can also be an issue. For example, whilst decaffeina-tion of coffee with dichloromethane is possible, the use of scCC>2 can be said to be natural Industrial applications of SCFs have been around for a long time. Decaffeination of coffee is perhaps the use that is best known [16], but of course the Born-Haber process for ammonia synthesis operates under supercritical conditions as does low density polyethylene (LDPE) synthesis which is carried out in supercritical ethene [17]. [Pg.137]

Figure 6.6 Schematic for the decaffeination of coffee on an industrial scale... Figure 6.6 Schematic for the decaffeination of coffee on an industrial scale...
Dichloromethane has been used as an extraction solvent for spices and beer hops and for decaffeination of coffee. It has also found use as a carrier solvent in the textile industry, in the manufacture of photographic film and as a blowing agent for polymer... [Pg.254]

A further method separates the extracted substances by absorption. Basic for this method is that there should be a high solubility of extracted substances in the absorption material, and that the solubility of absorption substance in the circulation solvent should be as low as possible. Further, the absorption material must not influence the extract in a negative way and a simple separation of extract and absorption material has to be available. An ideal absorption material is therefore a substance which is present in the raw material. Most plant-materials contain water, which can act as a very successful absorption material. An ideal example is the separation of caffeine for the decaffeination of coffee and tea. On the one hand, water has a low solubility in CO2, and on the other, water-saturated CO2 is necessary for the process. The extracted caffeine is dissolved into water in the separator and caffeine can be produced from this water-caffeine mixture by crystallization. One advantage of this separation method is that the whole process runs under nearly isobaric conditions. [Pg.381]

An industrial-scale application is the decaffeination of coffee and tea where a direct separation of the extracted caffeine in the extractor is realized. A layer of activated carbon follows a layer of raw material, and so on. In this way, the loaded extraction fluid is directly regenerated in the adsorption layer and enters as pure solvent into the next stage of raw material. The great advantage of this method is that no further high-pressure vessel is necessary for separation, which reduces investment costs dramatically. [Pg.381]

The particle-size distribution and the shape of the particles also influence the ratio of length-to-diameter of the extractor. As the costs for extractors depend not only on volume, but mainly on the diameter, the proper selection of the extractor height/diameter ratio must be made, with a preference for slim vessels. So far, only for the decaffeination of coffee beans with a particle size of about 7 mm can large ratios of 9 1 (length to diameter) be applied. For large particle sizes it is of advantage to feed the solvent from top to bottom, in order to avoid back-mixing. For the usual particle-size-distribution, ratios of 6 1 should be used. For raw material which tends to swell, like black tea or paprika, the ratio should be only 3 1, or if the extractor is equipped with baskets, the baskets should be equipped with multiple distribution. [Pg.387]

As one can see from Table 6.6-2 the decaffeination of coffee and tea is the largest application for supercritical fluid extraction, in terms of annual capacities and investment costs. Since the beginning of the 1970s, to the early 1990s, nearly 50% of the whole production capacity for decaffeination of coffee and tea changed to the supercritical extraction process. As the market for decaffeinated coffee is stable, no further plants have been installed within the past eight years. [Pg.392]

Such plants, with vessel volumes above 5 m3, are used for decaffeination of coffee, for tobacco, and recently for reduction of plant protective materials. Fig. 8.1-3 shows a large-scale unit for rice, with a daily capacity of over 90 t. Such plants are operated at pressures up to 325 bar. [Pg.439]

In contrast to the decaffeination of coffee, which is primarily executed with green coffee, black tea has to be extracted from the fermented aromatic material. Vitzthum and Hubert have described a procedure for the production of caffeine-free tea in the German patent application, 2127642 [11]. The decaffeination runs in multi-stages. First, the tea will be clarified of aroma by dried supercritical carbon dioxide at 250 bar and 50°C. After decaffeination with wet CO2 the moist leaf-material will be dried in vacuum at 50°C and finally re-aromatized with the aroma extract, removed in the first step. Therefore, the aroma-loaded supercritical CO2 of 300 bar and 40°C will be expanded into the extractor filled with decaffeinated tea. The procedure also suits the production of caffeine-free instant tea, in which the freeze-dried watery extract of decaffeinated tea will be impregnated with the aromas extracted before. [Pg.540]

Fruit juices can be deacidified with a weak base anion-exchange resin. Removal of compounds which cause a bitter taste is a more popular application (26,27). It is accomplished with resins that have no ion-exchange fimctionality. In essence, they are similar to the copolymer intermediates used by resin manufacturers in the production of macroporous cation and anion exchangers. These products are called polymeric adsorbents. They are excellent for removal of limonin [1180-71-8] and naringin [1023647-2], the principal compounds responsible for bitterness in orange, lemon, and grapefruit juices. The adsorbents are regenerated with steam or alcohol. Decaffeination of coffee (qv) and tea (qv) is practiced with the same polymeric adsorbents (28). [Pg.387]

PROBLEM 3.10 Dichloromethane (CH2C12), sometimes used as a solvent in the decaffeination of coffee beans, is prepared by reaction of methane (CH4) with chlorine. How many grams of dichloromethane result from reaction of 1.85 kg of methane if the yield is 43.1% ... [Pg.88]

A significant development in supercritical fluid extraction was Zosel s patent for decaffeination between 1964 and 1981, which reported a procedure for the decaffeination of coffee beans with C02 [6-10]. Also, a number of patents of some food companies have been reported that concern the decaffeination of coffee [11]. The American Food Company, for example, has constructed an extraction vessel 7 ft in diameter and 70 ft tall for supercritical C02 decaffeination of coffee at the Houston, Texas plant. The current annual U.S. market for decaffeinated coffee is 2- 3 billion [4]. [Pg.416]

E Lack and H Seidlitz, Commercial scale decaffeination of coffee and tea using supercritical COr In Extraction of Natural Products using Near-critical Solvents MB King and TR Bott, Ed., Chapman Hall, London, UK, 1993, pp 101-139. [Pg.431]

Extraction with supercritical CO2 is a technical process of increasing importance. It provides a mild and rapid technique for the extraction of low- or medium-polarity substances. Supercritical CO2 is used for supercritical fluid extraction (SFE) in important technical processes such as the decaffeination of coffee and the extraction of hops, as well as the extraction of naturally occurring compounds from biomaterials. As many applications are performed in the pharmaceutical, polymer, environmental and nutritional fields, direct on-line SFE-NMR would be an ideal tool to monitor the various extraction processes. [Pg.214]

As shown in Figure 1.17, there are three possible dichloroethylene compounds, all clear, colorless liquids. Vinylidene chloride forms a copolymer with vinyl chloride used in some kinds of coating materials. The geometrically isomeric 1,2-dichloroethylenes are used as organic synthesis intermediates and as solvents. Trichloroethylene is a clear, colorless, nonflammable, volatile liquid. It is an excellent degreasing and dry-cleaning solvent and has been used as a household solvent and for food extraction (for example, in decaffeination of coffee). Colorless, nonflammable liquid tetrachloroethylene has properties and uses similar to those of trichloroethylene. Hexachloro-butadiene, a colorless liquid with an odor somewhat like that of turpentine, is used as a solvent for higher hydrocarbons and elastomers, as a hydraulic fluid, in transformers, and for heat transfer. [Pg.48]

Below the critical temperature, a phase transition occurs when compressing a gas. The formation of a liquid phase is usually first noted by the formation of droplets on the walls of the container. At temperatures above the critical temperature, a substance can be continuously compressed without a separate liquid phase forming. Under such conditions, the substance is a gas, because it continues to fill its container. However, because densities comparable to those of the liquid can be reached by such compression, it is customary to call a substance above its critical temperature a supercritical fluid, where the term fluid (from flow) refers to either liquid or gas. Supercritical fluids, with densities comparable to liquid and high thermal energy, can be exceedingly good solvents and have found use recently in processes such as decaffeination of coffee. [Pg.34]

Supercritical fluids (scf) are highly compressed liquids or gases. The latter already have an established role in "clean extraction (substitution of chlorinated/organic solvents) on an industrial scale (e. g. decaffeination of coffee and tea, extraction of hops, spices, etc.). The specific physical and chemical properties of scf make them particularly suitable for a variety of other applications, e. g. reactions, powder technology and impregnation. [Pg.17]


See other pages where Decaffeination of coffee is mentioned: [Pg.387]    [Pg.521]    [Pg.22]    [Pg.244]    [Pg.139]    [Pg.169]    [Pg.50]    [Pg.24]    [Pg.30]    [Pg.138]    [Pg.138]    [Pg.79]    [Pg.322]    [Pg.3]    [Pg.10]    [Pg.379]    [Pg.537]    [Pg.678]    [Pg.48]    [Pg.343]    [Pg.348]    [Pg.148]   
See also in sourсe #XX -- [ Pg.138 ]

See also in sourсe #XX -- [ Pg.158 ]

See also in sourсe #XX -- [ Pg.158 ]

See also in sourсe #XX -- [ Pg.642 ]

See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Coffee, decaffeination

Decaffeinated

Decaffeinated coffee

Decaffeinating coffee

Decaffeinating of coffee beans

Decaffeination of Green Coffee Beans

Decaffeination of coffee and tea

Examples of processes for decaffeinating coffee using organic solvents

Water decaffeination of coffee beans

© 2024 chempedia.info