Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scale industrial applications

As with all of die processes described, drese are first studied in detail in the laboratoty with an industrial application as dre objective. Those processes which pass the criterion of economic potential are used in a pilot plant smdy, and dretr, if successful, at the production level which must be optimized. The materials which are produced are mainly, in the present instance, for application in the elecU onics industry where relatively high costs are acceptable. It will be seen drat the simple kinetic theory of gases is adequate to account for dre rates of these processes, and to indicate the ways in which production may be optimized on dre industrial scale. [Pg.2]

Usually spray-dried powders are sold. A purification step is not usually done on the industrial scale. The modification of the extracts are especially aimed at decreasing the sometimes too high viscosity to achieve better handling and application, but also a longer pot life and a better crosslinking [16,17,144]. [Pg.1070]

The application of the Birch reduction to ethers of estradiol by A. J. Birch opened up the area of 19-norsteroids to intensive research. The major Birch reduction product is an enol ether which affords either a 3-keto-A -or a 3-keto-A -19-norsteroid depending upon the hydrolysis conditions. Various 19-norsteroids have been found to have useful clinical activity compounds (30), (31), and (32) are oral contraceptive agents and compound (33) has been used as an oral anabolic agent. Several of these compounds were prepared on an industrial scale for a number of years by the Birch reduction of estradiol derivatives. [Pg.11]

A third parameter to consider is the column construction. Thus the sample applicator should provide optimal sample application to give the most performance possible out of the packed bed. Constructions should also allow simple, fast, and reproducible packing of the column. Because costs for repacking of columns are a substantial operating cost item in industrial chromatography, the selection of column construction from this point of view is also important. Some novel column constructions allow very simple procedures both for laboratory and for industrial scale (e.g., INdEX columns, see Section V). [Pg.62]

An a-amino acid 3 can be prepared by treating aldehyde 1 with ammonia and hydrogen cyanide and a subsequent hydrolysis of the intermediate a-amino nitrile 2. This so-called Strecker synthesis - is a special case of the Mannich reaction-, it has found application for the synthesis of a-amino acids on an industrial scale. The reaction also works with ketones to yield a, a -disubstituted a-amino acids. [Pg.270]

In general, high selectivities can be obtained in liquid membrane systems. However, one disadvantage of this technique is that the enantiomer ratio in the permeate decreases rapidly when the feed stream is depleted in one enantiomer. Racemization of the feed would be an approach to tackle this problem or, alternatively, using a system containing the two opposite selectors, so that the feed stream remains virtually racemic [21]. Another potential drawback of supported enantioselective liquid membranes is the application on an industrial scale. Often a complex multistage process is required in order to achieve the desired purity of the product. This leads to a relatively complicated flow scheme and expensive process equipment for large-scale separations. [Pg.132]

The manufacture of ionic liquids on an industrial scale is also to be considered. Some ionic liquids have already been commercialized for electrochemical devices (such as capacitors) applications [45]. [Pg.278]

Block copolymers have been synthesized on an industrial scale mainly by anionic or cationic polymerization, although monomers for block components are limited to ones capable of the process. Intensive academic and technological interest in radical block copolymerization using macroinitiators is growing. This process can be implemented in plants with easier handling of materials, milder conditions of operation, and a variety of materials to give various kinds of block copolymers to develop a wide application area [1-3]. [Pg.755]

Because these variables have a very pronounced effect on the current density required to produce and also maintain passivity, it is necessary to know the exact operating conditions of the electrolyte before designing a system of anodic protection. In the paper and pulp industry a current of 4(KX) A was required for 3 min to passivate the steel surfaces after passivation with thiosulphates etc. in the black liquor the current was reduced to 2 7(X) A for 12 min and then only 600 A was necessary for the remainder of the process . From an economic aspect, it is normal, in the first instance, to consider anodically protecting a cheap metal or alloy, such as mild steel. If this is not satisfactory, the alloying of mild steel with a small percentage of a more passive metal, such as chromium, molybdenum or nickel, may decrease both the critical and passivation current densities to a sufficiently low value. It is fortunate that the effect of these alloying additions can be determined by laboratory experiments before application on an industrial scale is undertaken. [Pg.267]

Unfortunately, relatively little information has been made available for industrial gas-liquid contactors. Further data from industry could permit significant tests of the reliability of the present correlations and their applicability to scale-up. Steel and Maxon (SI 1) reported on the power requirements during novobiacin fermentation in 20- and 250-liter pilot-plant vessels and in 12,000- and 24,000-gal vessels. The comparative data are difficult to evaluate because of changes that occurred in viscosity and gas retention during the course of the fermentation. In addition, geometric similarity did not prevail... [Pg.323]

In the present study the dimer (salen)CoAlX3 showed enhanced activity and enantioselectivity. The catalyst can be synthesized easily by readily commercially available precatalyst Co(salen) in both enantiomeric forms. Potentially, the catalyst may be used on an industrial scale and could be recycled. Currently we are looking for the applicability of the catalyst to asymmetric reaction of terminal and meso epoxides with other nucleophiles and related electrophile-nucleophile reactions. [Pg.208]

Plant carotenoids are still extracted at laboratory and industrial scales with solvent mixtnres of ethanol and ethyl acetate, bnt solvent extraction always bears the risk of toxic residnes in the extracts and this limits their use in large production applications in the food and pharmaceutical industries. [Pg.310]

The Sudan series of azo dyes, which have also been synthesized in micro reactors, are commonly used as microbial stains. The thermally unstable nature of the diazonium precursors and reported explosions often demand extensive safety procedures when going to an industrial scale, which limits the commercial applicability of the azo reaction. [Pg.463]

The conversion of ethylene to acetaldehyde using a soluble palladium complex, developed in the late 1950s, was one of the early applications of homogeneous catalysis and the first organo-palladium reaction practised on an industrial scale [40], Typically this reaction requires stoichiometric amounts of CuCl under aerobic conditions. The use of copper represents not only an environmental issue, but often limits the scope of ligands that can be used in conjunction with Pd. [Pg.247]

Finally, two major industrial applications of nanocatalysts should be mentioned that are currently in the transition from basic research to industrial scale-up. Headwaters NanoKinetix and Degussa have developed and patented [412-A15] a direct synthesis method for the... [Pg.39]

The intention of this chapter is to provide a general survey on the preparative methodologies for the size- and shape-selective synthesis of metallic nanoparticles that have emerged from the benches of chemical basic research during the last few decades and become established as practical standard protocols. Industrial scale-up, however, has only just started to test the economic viability of these procedures and to determine whether they can meet the challenges of a number of very specific applications. The commercial manufacture of such thermodynamically extremely unstable nanoparticles in defined sizes and shapes on the kilo-scale is still confronted by a number of major problems and it remains to be seen how these can be solved. [Pg.41]

At an industrial scale, the esterification catalyst must fulfill several conditions that may not seem so important at lab-scale. This must be very active and selective as by-products are likely to render the process uneconomical, water-tolerant and stable at relatively high temperatures. In addition, it should be an inexpensive material that is readily available on an industrial scale. In a previous study we investigated metal oxides with strong Bronsted acid sites and high thermal stability. Based on the literature reviews and our previous experimental screening, we focus here on application of metal oxide catalysts based on Zr, Ti, and Sn. [Pg.292]

Esters can be formed when the hydrocarbonylation reaction is carried out in an alcohol.242 Although hydrocarbonylation is the basis for conversion of alkenes to carboxylic acids on an industrial scale, it has seen only limited application in laboratory synthesis. [Pg.750]

Industrial-scale manufacturing data may not be available at the time of submission of the application. In such cases a validation protocol (details of which are included in the draft guideline) should be included in the submission. [Pg.658]

Particular attention should be paid to nonstandard production technologies including nonstandard methods of sterilization, sterile filtration and aseptic processing, lyophilization, microencapsulation, and certain critical mixing and coating operations. With such processes pilot-scale manufacture may not be predictive of industrial scale manufacture, and data on three full-scale production batches may be required in the application. [Pg.658]

In Table 9 the recent statistics of ATES utilisations in Sweden are presented. As can be seen the technology is so far preferably used for commercial and institutional buildings with small or medium sized applications. Large-scale plants are applied for some district heating and cooling systems while the industry sector only has a couple of systems applied for manufacturing industries. The rest represents cooling in the telecom sector. [Pg.159]


See other pages where Scale industrial applications is mentioned: [Pg.808]    [Pg.808]    [Pg.298]    [Pg.157]    [Pg.113]    [Pg.291]    [Pg.331]    [Pg.325]    [Pg.373]    [Pg.154]    [Pg.137]    [Pg.147]    [Pg.217]    [Pg.219]    [Pg.559]    [Pg.508]    [Pg.392]    [Pg.4]    [Pg.213]    [Pg.228]    [Pg.299]    [Pg.305]    [Pg.410]    [Pg.212]    [Pg.916]    [Pg.27]    [Pg.84]    [Pg.46]    [Pg.259]   
See also in sourсe #XX -- [ Pg.132 ]

See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Example 3 Scaling up the System Application to Industrial Production

Industrial-Scale Applications of Enzymes in Non-Aqueous Solvents

Scales, application

© 2024 chempedia.info