Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data for instrumentation

Instrumental band broadening or axial dispersion can cause calibration errors when employing polydisperse standards. Correction of the polydisperse standard calibration data for instrumental band broadening will minimize the effect on molecular weight analyses of polymer samples. However, as previously demonstrated in this report, when low dispersion SEC columns are employed instrumental band broadening is minimized and the effect on use of linear calibration methodology is negligible. [Pg.93]

Data for the several flame methods assume an acetylene-nitrous oxide flame residing on a 5- or 10-cm slot burner. The sample is nebulized into a spray chamber placed immediately ahead of the burner. Detection limits are quite dependent on instrument and operating variables, particularly the detector, the fuel and oxidant gases, the slit width, and the method used for background correction and data smoothing. [Pg.727]

In addition to fulfilling the in-house requirements for quality control, state and local air monitoring networks which are collecting data for compliance purposes are required to have an external performance audit on an annual basis. Under this program, an independent organization supplies externally calibrated sources of air pollutant gases to be measured by the instrumentation undergoing audit. An audit report summarizes the performance of the instruments. If necessary, further action must be taken to eliminate any major discrepancies between the internal and external calibration results. [Pg.224]

Photomultipliers are used as detectors in the single-channel instruments. GaAs cathode tubes give a flat frequency response over the visible spectrum to 800 nm in the near IR. Contemporary Raman spectrometers use computers for instrument control, and data collection and storage, and permit versatile displays. [Pg.432]

Since no device is completely specific for the substances of interest, care must be taken that interferences do not invalidate the sampling results. Many common gases and vapors react with the same chemicals, or have similar physical properties, so that the instrument may give falsely high or low readings for the substance being sampled. The manufacturer s data for colorimetric indicating tubes lists those substances which may interfere with the desired determination. [Pg.266]

Evaluate the initial direet reading instrument survey data for the presenee of eombustible gases, organie and inorganie gases, partieu-lates, vapors, and ionizing radiation. [Pg.64]

The data logger or microprocessor selected by your predictive maintenance program is critical to the success of the program. There is a wide variety of systems on the market that range from handheld overall value meters to advanced analyzers that can provide an almost unlimited amount of data. The key selection parameters for a data acquisition instrument should include the expertise required to operate, accuracy of data, type of data, and manpower required to meet the program demands. [Pg.806]

Accuracy of data The microprocessor should be capable of automatically acquiring accurate, repeatable data from equipment included in the program. The elimination of user input on filter settings, bandwidths and other measurement parameters would greatly improve the accuracy of acquired data. The specific requirements that determine data accuracy will vary depending on the type of data. For example, a vibration instrument should be able to average... [Pg.806]

Photoelectric-Colorimetric Method. Although the recording spectrophotometer is, for food work at least, a research tool, another instrument, the Hunter multipurpose reflectometer (4), is available and may prove to be applicable to industrial quality control. (The newer Hunter color and color difference meter which eliminates considerable calculation will probably be even more directly applicable. Another make of reflection meter has recently been made available commercially that uses filters similar to those developed by Hunter and can be used to obtain a similar type of data.) This instrument is not a spectrophotometer, for it does not primarily measure the variation of any property of samples with respect to wave length, but certain colorimetric indexes are calculated from separate readings with amber, blue, and green filters, designated A, B, and G, respectively. The most useful indexes in food color work obtainable with this type of instrument have been G, which gives a... [Pg.9]

The modification improves performance and is interesting in connection with x-ray emission spectrography (Chapters 7, 8, and 9). It consists in measuring the intensity of tin Ka relative to that of scattered x-rays entering the detector from an analyzing crystal set for the reflection of x-rays 2.2 A in wavelength. As the tin coating becomes thicker, increased attenuation of the x-rays scattered by the iron cause s the intensity ratio to increase more rapidly than does the intensity of tin Ka. Table 6-3 contains performance data for the Quantrol on Method II (modified). The instrument can also be set up to use industrially a modification of Method III. [Pg.158]

The analysis of biexponential kinetic data obtained instrumentally will now be considered for the case k k2. The instrument reading is... [Pg.73]

Many current multidimensional methods are based on instruments that combine measurements of several luminescence variables and present a multiparameter data set. The challenge of analyzing such complex data has stimulated the application of special mathematical methods (80-85) that are made practical only with the aid of computers. It is to be expected that future analytical strategies will rely heavily on computerized pattern recognition methods (79, 86) applied to libraries of standardized multidimensional spectra, a development that will require that published luminescence spectra be routinely corrected for instrumental artifacts. Warner et al, (84) have discussed the multiparameter nature of luminescence measurements in detail and list fourteen different parameters that can be combined in various combinations for simultaneous measurement, thereby maximizing luminescence selectivity with multidimensional measurements. Table II is adapted from their paper with the inclusion of a few additional parameters. [Pg.12]

Calibration. In general, standards used for instrument calibration are physical devices (standard lamps, flow meters, etc.) or pure chemical compounds in solution (solid or liquid), although some combined forms could be used (e.g., Tb + Eu in glass for wavelength calibration). Calibrated lnstr iment parameters include wavelength accuracy, detection-system spectral responsivity (to determine corrected excitation and emission spectra), and stability, among others. Fluorescence data such as corrected excitation and emission spectra, quantum yields, decay times, and polarization that are to be compared among laboratories are dependent on these calibrations. The Instrument and fluorescence parameters and various standards, reviewed recently (1,2,11), are discussed briefly below. [Pg.100]

The minicomputer based system for Instrument automation at Glidden has been prevlousj.y reported (1). since that system predates the availability of low cost personal computers and data acquisition hardware, most of the hardware and software was designed and assembled in-house. ... [Pg.10]

The pilot plant stage Is vital in the scale-up of any new resin process, and in this paper we discuss the design philosophy of pilot plants and then describe two fully Instrumented and computer data logged reactors. Some indication is given of the use of the extracted data for both modelling and scale up. Both controlled and data logged parameters are tabulated and an example of data extraction for heat balance is illustrated. [Pg.454]

Fourier-transform infrared (IR) spectra (resolution 2 cm- ) were recorded with a Perkin Elmer 1750 instrument in a quartz cell connected to grease-free evacuation and gas manipulation lines. The self-supporting disk technique was used. Before recording the spectra, the samples were treated with O2 at 450°C (Ih), then cooled down to r.t. before evacuating the O2. The sample was then evacuated at 400°C. Evacuation at higher temperatures lead to a drastic cut off of IR trasparency. All reactants were purified prior to the adsorption experiments. Due to the better resolution of the spectra, only results for Sb V=1.0 are reported here, however the IR data for Sb V=3.0 were not significantly different. [Pg.278]

Apart from innovative work, RMs are essential during exerdses such as the introduction to a laboratory of a method from elsewhere or the transfer of an established method onto new instrumentation. Even where the conditions for the analysis have been standardized by the manufacturer of a reagent kit, some validation work should still be undertaken so as to have documented data for quality assurance purposes, e.g. accreditation, as a basis for IQC, for later reference when problems which may be related to equipment, reagents or staff etc. need to be investigated. [Pg.114]

Adjustable Workbench (PAW) instrument assembly. The SH shown in Figs. 3.15 and 3.16 contains the electromechanical transducer (mounted in the center), the main and reference Co/Rh sources, multilayered radiation shields, detectors and their preamplifiers and main (linear) amplifiers, and a contact plate and sensor. The contact plate and contact sensor are used in conjunction with the IDD to apply a small preload when it places the SH holding it firmly against the target. The electronics board contains power supplies/conditioners, the dedicated CPU, different kinds of memory, firmware, and associated circuitry for instrument control and data processing. The SH of the miniaturized Mossbauer spectrometer MIMOS II has the dimensions (5 x 5.5 x 9.5) cm and weighs only ca. 400 g. Both 14.4 keV y-rays and 6.4 keV Fe X-rays are detected simultaneously by four Si-PIN diodes. The mass of the electronics board is about 90 g [36],... [Pg.55]

A final point is the value of earlier (old) validation data for actual measurements. In a study about the source of error in trace analysis, Horwitz et al. showed that systematic errors are rare and the majority of errors are random. In other words, the performance of a laboratory will vary with time, because time is related to other instruments, staff, chemicals, etc., and these are the main sources of performance variation. Subsequently, actual performance verification data must be generated to establish method performance for all analytes and matrices for which results will be reported. [Pg.131]

Universal and selective detectors, linked to GC or LC systems, have remained the predominant choice of analysts for the past two decades for the determination of pesticide residues in food. Although the introduction of bench-top mass spectrometers has enabled analysts to produce more unequivocal residue data for most pesticides, in many laboratories the use of selective detection methods, such as flame photometric detection (FPD), electron capture detection (BCD) and alkali flame ionization detection (AFID) or nitrogen-phosphorus detection (NPD), continues. Many of the new technologies associated with the on-going development of instrumental methods are discussed. However, the main objective of this section is to describe modern techniques that have been demonstrated to be of use to the pesticide residue analyst. [Pg.737]


See other pages where Data for instrumentation is mentioned: [Pg.239]    [Pg.349]    [Pg.636]    [Pg.197]    [Pg.239]    [Pg.349]    [Pg.636]    [Pg.197]    [Pg.274]    [Pg.45]    [Pg.315]    [Pg.11]    [Pg.1204]    [Pg.1238]    [Pg.2271]    [Pg.53]    [Pg.654]    [Pg.934]    [Pg.1037]    [Pg.122]    [Pg.128]    [Pg.857]    [Pg.207]    [Pg.1029]    [Pg.1030]    [Pg.533]    [Pg.121]    [Pg.151]    [Pg.259]    [Pg.125]    [Pg.456]    [Pg.707]    [Pg.317]    [Pg.337]   


SEARCH



Instrument for Automatic Surface Tracking and Data Processing

Instrumental data

Instrumentation for

Instruments for

© 2024 chempedia.info