Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions electron acceptors

The reaction rates and product yields of [2+2] cycloadditions are expectedly enhanced by electronic factors that favor radical formation. Olefins with geminal capto-dative substituents are especially efficient partners (equations 33 and 34) because of the synergistic effect of the electron acceptor (capto) with the electron donor (dative) substituents on radical stability [95]... [Pg.779]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

The 1,3-dipolar cycloadditions are a powerful kind of reaction for the preparation of functionalised five-membered heterocycles [42]. In the field of Fischer carbene complexes, the a,/ -unsaturated derivatives have been scarcely used in cyclo additions with 1,3-dipoles in contrast with other types of cyclo additions [43]. These complexes have low energy LUMOs, due to the electron-acceptor character of the pentacarbonyl metal fragment, and hence, they react with electron-rich dipoles with high energy HOMOs. [Pg.71]

The Diels-Alder reaction of activated olefins is considered as one of the most useful and predictable reactions in organic synthesis. The electron-acceptor character of the pentacarbonylmetal fragment makes a,/J-unsaturated carbene complexes ideal substrates for the [4S+2C] cycloaddition reaction with dienes. [Pg.94]

Reactions between much stronger donors and acceptors belong to the electron tranter band. Such olefins do not form cyclobutanes but ion radical pairs or salts of olefins. refrato(dimethylamino)elhylene has an ionization potential as low as Na. The olefin with extraordinary strong electron-donating power is known not to undergo [2+2]cycloaddition reaction, but to give 1 2 complex with TCNE (transfer band in Schane 3) [23]. [Pg.30]

Singlet molecular oxygen ( A is an electron acceptor powerful enough to react with olefins in the pseudoexcitation band. The [2h-2] cycloaddition and ene reactions and the stereoselectivities are reviewed in this subsection. [Pg.37]

Bending of unsaturated bonds reduces the overlap between the p-orbitals and weakens the interaction. The n orbital hes high in energy and the Jt orbital lies low. Bent unsaturated bonds are electron acceptors as well as donors. The energy gap between Jt and Jt is small. Bent unsaturated bonds are readily pseudoexcited to undergo [2+2] cycloaddition reactions. [Pg.44]

Ketenes have cnmnlative bonds and can undergo [2+2] cycloaddition reactions across C=C and C=0 bonds. Interestingly, most of the prodncts obtained are cyclobutanones rather than oxetanes. Thermal [2+2] cycloaddition reactions in the pseudoexcitation band occur between electron donors and acceptors. Alkenes are donors while ketenes are acceptors. In contrast to the experimental observations. [Pg.45]

Hetero Diels-Alder reactions using nitroalkenes followed by 1,3-dipolar cycloadditions provide a useful strategy for the construction of polycyclic heterocycles, which are found in natural products. Denmark has coined the term tandem [4+2]/[3+2] cycloaddition of nitroalkenes for this type of reaction. The tandem [4+2]/[3+2] cycloaddition can be classified into four families as shown in Scheme 8.31, where A and D mean an electron acceptor and electron donor, respectively.149 In general, electron-rich alkenes are favored as dienophiles in [4+2] cycloadditions, whereas electron-deficient alkenes are preferred as dipolarophiles in [3+2] cycloadditions. [Pg.279]

The photoinduced [2 + 2] cycloaddition of carbonyl acceptors with electron-rich olefins leads to oxetanes (Paterno-Biichi reaction) with high regio- and stereoselectivities (equation 25). [Pg.214]

Diels-Alder cycloaddition reactions of electron-poor dienophiles to electron-rich dienes, which are generally carried out thermally, afford widespread applications for C—C bond formation. On the basis of their electronic properties, numerous dienes can be characterized as electron donors and dienophiles as electron acceptors. Despite the early suggestions by Woodward,206 the donor/ acceptor association and electron-transfer paradigm are usually not considered as the simplest mechanistic formulation for the Diels-Alder reaction. However, the examples of cycloaddition reactions described below will show that photoirradiation of various D/A pairs leads to efficient cycloaddition reactions via electron-transfer activation. [Pg.264]

Cycloaddition reactions of indolizines such as 547 can generally be performed with moderately electron-poor alkenes only, because alkenes with strong acceptor substituents predominantly give Michael adducts. The cycloaddition of 2-methylindolizine... [Pg.452]

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

Without ion-radical initiation, the yield of the resulted product reaches 50% for 24 h. Practically the same yield can be achieved for the same time in the presence of tris(4-bromophenyl)ammoniumyl hexachloroantimonate and for only 6 h on sonication (Nebois et al. 1996). Sonication accelerates the rate-determining formation of the diene cation-radical. Of course, hydroxynaphthoquinone is strong enough as an electron-acceptor with respect to 2-butenal Af,Af-dimethylhydrazone. Therefore, the question remains whether sonication is more or less the general method for the initiation of ion-radical cycloaddition. A possible role of sonication in optimization of ion-radical reactions was considered in Section 5.2.5. [Pg.369]

Unlike thermal [2 + 2] cycloadditions which normally do not proceed readily unless certain structural features are present (see Section 1.3.1.1.), metal-catalyzed [2 + 2] cycloadditions should be allowed according to orbital symmetry conservation rules. There is now evidence that most metal-catalyzed [2 + 2] cycloadditions proceed stepwise via metallacycloalkanes as intermediates and both their formation and transformation are believed to occur by concerted processes. In many instances such reactions occur with high regioselectivity. Another mode for [2 + 2] cyclodimerization and cycloadditions involves radical cation intermediates (hole-catalyzed) obtained from oxidation of alkcnes by strong electron acceptors such as triarylammini-um radical cation salts.1 These reactions are similar to photochemical electron transfer (PET) initiated [2 + 2] cyclodimerization and cycloadditions in which an electron acceptor is used in the irradiation process.2 Because of the reversibility of these processes there is very little stereoselectivity observed in the cyclobutanes formed. [Pg.102]

There are a number of other mechanisms by which alkenes can undergo photochemical f2 + 2) cycloaddition, one of which works well for electron-rich alkenes and electron-acceptor sensitizers. The pathway is through the radical cation of the alkene, which attacks a second, ground-state alkene molecule and then cydizes and accepts an electron to give the product cyclobutane. Typical of this group of reactions is the formation of 1,2-dialkoxycydobutanes from alkoxy-ethylenes with drcyanonaphthalene as sensitizer 12.78). [Pg.67]

Cyano-substituted ethylenes react in a different way with aliphatic ketones. The orientation of photochemical cycloaddition (4.661 is the opposite of that found for electron-rich alkenes, and the reaction is highly stereoselective (4.69) in the early stages. These processes involve the formation and subsequent decay of an excited complex (exciplex) from the (n,n ) singlet state of the ketone and the alkene. Aryl ketones undergo intersystem crossing so efficiently that such a singlet-state reaction is rarely observed, but the reaction of a benzoate ester with an electron-rich alkene 14.70 rnay well be of this type, with the ester acting as electron-acceptor rather than electron-donor. [Pg.128]

The (5)-tryptophan-derived oxazaborolidenes utilized in this aldol study have been previously examined by Corey as effective catalysts for enantioselective Diels-Alder cycloaddition reactions [6]. Corey has documented unique physical properties of the complex and has proposed that the electron-rich indole participates in stabilizing a donor-acceptor interaction with the metal-bound polarized aldehyde. More recently, Corey has formulated a model exemplified by 7 in which binding by the aldehyde to the metal is rigidified through the formation of a hydrogen-bond between the polarized formyl C-H and an oxyanionic ligand [7], The model illustrates the sophisticated design elements that can be incorporated into the preparation of transition-metal complexes that lead to exquisite control in aldehyde enantiofacial differentiation. [Pg.514]

Donor-acceptor interactions are the first step in some Diels-Alder reactions7,22 between electron-poor olefins and electron-rich olefins, and also in spontaneous polymerization which can occur during cycloaddition reactions of olefins23. [Pg.369]

The formation of CT complexes between alkenes is considered to be the first step of the cycloaddition reactions, and it may also be the first step of some types of olefin polymerization23. The CT complex obtained from strong electron donors and strong electron acceptors may produce a complete charge separation with formation of an ion-radical pair (cation radical and anion radical pair), as illustrated by Scheme 2. [Pg.370]

Azirene + cation radicals (81) have proven useful as 1,3-dipole equivalents for cycloaddition reactions. Several heterocycles, such as pyrrolines, imidazoles, pyrroles and porphyrins, have been synthesized from azirenes in low to moderate yields, via PIET using DCN or DCA as electron acceptors (Scheme 76)163. [Pg.1343]

Suzuki et al. reported the photochemical reaction of CT crystals, in which cycloaddition reaction of bis(l,2,5-thiadiazolo)tetracyano-quinodimethane 17 (electron acceptor) and 2-divinylstylene 18 (electron donor) is efficiently induced (Scheme 3). [17] A structural feature of the CT crystal is the asymmetric nature of the inclusion lattice because of the adoption of a chiral space group, P2. The [2 + 2] photoadduct 19 was formed via the single crystal-to-single crystal transformation, and the optically active product with 95% ee was obtained. [Pg.109]

In this account, we will focus on the transient analysis of these systems, which has strongly contributed to a deeper understanding of the diverse reaction modes (Patemo-Buchi, proton abstraction, cycloaddition). In general, aromatic ketones were selected as electron acceptors for reasons of suitable excitation and long wavelength absorption of the radical anion intermediates. Among them, fluorenone 3 is particularly well suited since the concentration, solvent, temperature, and cation radius dependence of the absorption spectra of pairs formed with metal cations are already known [29]. Hogen-Esch and Smid [30, 10] pointed out that a differentiation between CIP and SSIP is possible for fluorenone systems. On the other hand, FRI s and SSIP s cannot be differentiated simply by their UV/Vis absorption spectra, whereas for instance conductance measurements may be successful. However, the portion of free radical ions in fluorenyl salt solutions was shown to be less important [9, 31]... [Pg.223]

Several organofullerene donor-acceptor molecular material hybrid systems have been synthesized via 1,3-dipolar cycloaddition reactions of azomethine ylides, via Bingel cyclopropanation and methanofullerene formation intermediates as well as via cycloaddition reactions, that have already been discussed in previous sections. The majority of such hybrid systems possess always as acceptor unit the fullerene core and as donor moieties porphyrins, tetrathiafulvalenes, ferrocenes, quinones, or electron-rich aromatic compounds that absorb visible light [190-193]. The most active research topic in this particularly technological field relies (i) on the arrangement of several redox-active building blocks in... [Pg.17]

The most important competing process to the bond-formation is the complete electron transfer to form ion-radicals, which occurs where no bond formation is possible, for example, for aromatic donor-acceptor pairs. For vinyl copolymerizable pairs, the bond will form between the components to give a diradical tetramethylene. For the ionic homopolymerization system, on the other hand, it is difficult to distinguish the ion-radicals from zwitterionic tetramethylenes by the kinetic analysis. In this case, the accompanying cycloaddition reaction offers powerful evidence for the zwitterion formation, i.e., the bond-formation. [Pg.22]


See other pages where Cycloaddition reactions electron acceptors is mentioned: [Pg.171]    [Pg.214]    [Pg.379]    [Pg.379]    [Pg.463]    [Pg.452]    [Pg.118]    [Pg.150]    [Pg.151]    [Pg.378]    [Pg.157]    [Pg.352]    [Pg.192]    [Pg.334]    [Pg.11]    [Pg.256]    [Pg.228]    [Pg.245]    [Pg.247]    [Pg.251]    [Pg.827]    [Pg.558]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



Acceptor electron

Acceptor reaction

© 2024 chempedia.info