Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Donor acceptor

Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58]. Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58].
Wynne K, Galli C and Hochstrasser R M 1994 Ultrafast charge transfer in an electron donor-acceptor complex J. Cham. Phys. 100 4796-810... [Pg.1998]

Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene. Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene.
A wide class of aiyl-based quaternary surfactants derives from heterocycles such as pyridine and quinoline. The Aralkyl pyridinium halides are easily synthesized from alkyl halides, and the paraquat family, based upon the 4, 4 -bipyridine species, provides many interesting surface active species widely studied in electron donor-acceptor processes. Cationic surfactants are not particularly useful as cleansing agents, but they play a widespread role as charge control (antistatic) agents in detergency and in many coating and thin film related products. [Pg.2577]

A salient feature of natural surfaces is tliat tliey are overwhelmingly electron donors [133]. This is tlie basis for tlie ubiquitous hydrophilic repulsion which ensures tliat a cell can function, since massive protein-protein aggregation and protein-membrane adsorjition is tliereby prevented. In fact, for biomolecule interactions under typical physiological conditions, i.e. aqueous solutions of moderately high ionic strengtli, tlie donor-acceptor energy dominates. [Pg.2839]

Much of chemistry occurs in the condensed phase solution phase ET reactions have been a major focus for theory and experiment for the last 50 years. Experiments, and quantitative theories, have probed how reaction-free energy, solvent polarity, donor-acceptor distance, bridging stmctures, solvent relaxation, and vibronic coupling influence ET kinetics. Important connections have also been drawn between optical charge transfer transitions and thennal ET. [Pg.2974]

Figure C3.2.7. A series of electron transfer model compounds with the donor and acceptor moieties linked by (from top to bottom) (a) a hydrogen bond bridge (b) all sigma-bond bridge (c) partially unsaturated bridge. Studies with these compounds showed that hydrogen bonds can provide efficient donor-acceptor interactions. From Piotrowiak P 1999 Photoinduced electron transfer in molecular systems recent developments Chem. Soc. Rev. 28 143-50. Figure C3.2.7. A series of electron transfer model compounds with the donor and acceptor moieties linked by (from top to bottom) (a) a hydrogen bond bridge (b) all sigma-bond bridge (c) partially unsaturated bridge. Studies with these compounds showed that hydrogen bonds can provide efficient donor-acceptor interactions. From Piotrowiak P 1999 Photoinduced electron transfer in molecular systems recent developments Chem. Soc. Rev. 28 143-50.
Let us consider tire case of a donor-acceptor pair where tire acceptor, after capturing excitation from tire donor, can emit a photon of fluorescence. If tire excitation light is linearly polarized, tire acceptor emission generally has a different polarization. Common quantitative expressions of tliis effect are tire anisotropy of fluorescence, r, or tire degree of polarization,... [Pg.3021]

Morokuma K 1977. Why Do Molecules Interact The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding, and Proton Affinity. Accounts of Chemical Research 10 294-300. [Pg.181]

An alternative drivirg force could involve a donor - acceptor interaction. The electron-poor pyridine ring that is coordinated to the copper cation can act as electron acceptor with respect to the aromatic ring of the -amino acid. The fact that donating substituents on the amino acid increase the efficiency... [Pg.99]

In summary, there are indications that neither hydrophobic interactions, nor donor- acceptor interactions are predominantly driving the arene - arene interaction. Osnsequently, we contend that these interactions are mainly governed by London - dispersion and electrostatic forces. [Pg.101]


See other pages where Donor acceptor is mentioned: [Pg.894]    [Pg.894]    [Pg.951]    [Pg.2594]    [Pg.2835]    [Pg.2839]    [Pg.2972]    [Pg.2974]    [Pg.2975]    [Pg.2976]    [Pg.2976]    [Pg.2976]    [Pg.2977]    [Pg.2977]    [Pg.2977]    [Pg.2980]    [Pg.2980]    [Pg.2982]    [Pg.2985]    [Pg.2991]    [Pg.3019]    [Pg.3021]    [Pg.3022]    [Pg.3026]    [Pg.3027]    [Pg.281]    [Pg.41]    [Pg.191]    [Pg.142]    [Pg.143]    [Pg.673]    [Pg.675]    [Pg.36]    [Pg.97]    [Pg.97]    [Pg.98]    [Pg.100]    [Pg.100]    [Pg.101]    [Pg.177]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



© 2024 chempedia.info