Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion products soluble

Calculate the pressure of hydrogen required to stop corrosion of cadmium at 25 °C in deaerated water, with Cd(OH)2 as the corrosion product. [Solubility product Cd(OH)2 = 2.0 x IQ- ]... [Pg.40]

As a very important topic in contamination buildup, the question is still open to what extent the data on corrosion product solubilities in the primary coolant are of importance for the behavior of trace amounts of cobalt. It seems to be still questionable whether cobalt ferrites as a well-defined compound with properties similar to the nickel ferrites can exist under PWR primary coolant conditions, whether cobalt atoms can be incorporated into a nickel ferrite lattice or whether traces of cobalt may be deposited onto the surfaces of the reactor core by adsorption on other, already deposited oxides. Such adsorption processes may occur even on the Zircaloy oxide films in the absence of any net deposition of corrosion products. Experimental investigations of the interaction of dissolved cobalt with heated Zircaloy surfaces (Lister et al., 1983) indicated that at low crud levels in the coolant cobalt deposition on surfaces is dominated by processes involving dissolved species, with adsorption/desorption processes being the responsible mechanisms. The extent of cobalt deposition is controlled by the type of oxide present on the Zircaloy surface thin black films of zirconium oxide will pick up less cobalt from the solution than thick white oxide films, even when the differences in the available surface areas of both types of oxides are taken into account. The deposition process seems to be little affected by the heat flux in the exposed metal. According to Thornton (1992), such adsorption-desorption exchange processes provide a pathway for radioactive species to be transported around the circuit even when the net movement of corrosion products is minimized this means that under such circumstances the processes of activity transport and of corrosion product transport may be decoupled. They may provide a pathway for target nuclides such as Co to be adsorbed onto fuel rod surfaces even in a core which is virtually free of deposited corrosion product particles. [Pg.281]

In the Cora code, the corrosion product layers outside the reactor core are rather arbitrarily subdivided into two layers, a transient one and a permanently deposited one. Supply to the transient layer occurs via deposition of suspended particles from the coolant, release from it includes erosion of particles back to the coolant as well as transport into the permanently deposited layer and partial conversion into dissolved species. In a comparable manner, the supply of nuclides to the permanent layer is assumed to result from transfer from the transient layer and the exchange equilibrium with the dissolved species present in the coolant. The deposition coefficients of suspended solids can be calculated on the basis of particle size and flow characteristics. The coefficients of relevance for the permanently deposited layer, including ionic transfer mechanisms between liquid and solid phases, can be derived from theoretical considerations as well as from laboratory studies of corrosion product solubilities. Finally, diffusion rates of nuclides at the interphase layers are needed, from the oxide layer to the coolant as well as in the reverse direction. These data can be obtained in part by theoretical considerations and by measurements at the plants. [Pg.329]

W.G. Cook, R.P. Olive, Prediction of crud deposition in a CANDU-SCWR core through corrosion product solubility and transport modelling, in ISSCWR-5 The Proceedings of the 5th International Symposium on Supercritical Water-Cooled Reactors, March 13—16, 2011, Canadian Nuclear Society, Vancouver, BC, Canada. Toronto, Ontario, 2011. Paper P83. [Pg.148]

In the outdoor environment, the high concentrations of sulfur and nitrogen oxides from automotive and industrial emissions result in a corrosion having both soluble and insoluble corrosion products and no pacification. The results are clearly visible on outdoor bronze sculpture (see Airpollution Exhaust CONTROL, automotive Exhaust conthol, industrial). [Pg.425]

The possible remedial and preventive actions are hot soaks and drains during cooldown to help remove soluble deposited material, chemical cleaning to remove corrosion products and reduce the pressure drop (see Metal surface treatments), and reduced corrosion product transport into OTSG using amines other than ammonia in feedwater (14). [Pg.194]

Condensate Polishing. Ion exchange can be used to purify or poHsh returned condensate, removing corrosion products that could cause harmful deposits in boilers. Typically, the contaminants in the condensate system are particulate iron and copper. Low levels of other contaminants may enter the system through condenser and pump seal leaks or carryover of boiler water into the steam. Condensate poHshers filter out the particulates and remove soluble contaminants by ion exchange. [Pg.261]

Calcium carbonate has normal pH and inverse temperature solubilities. Hence, such deposits readily form as pH and water temperature rise. Copper carbonate can form beneath deposit accumulations, producing a friable bluish-white corrosion product (Fig. 4.17). Beneath the carbonate, sparkling, ruby-red cuprous oxide crystals will often be found on copper alloys (Fig. 4.18). The cuprous oxide is friable, as these crystals are small and do not readily cling to one another or other surfaces (Fig. 4.19). If chloride concentrations are high, a white copper chloride corrosion product may be present beneath the cuprous oxide layer. However, experience shows that copper chloride accumulation is usually slight relative to other corrosion product masses in most natural waters. [Pg.73]

Voluminous corrosion products are usually absent, as most copper amine complexes are quite soluble. Adjacent to corroded areas, one often finds small amounts of corrosion products and deposits colored a vivid blue-green by compounds containing liberated copper ion. [Pg.193]

Electrolytic corrosion occurs in regions I and IV with the formation of soluble iron ions. Solid corrosion products which can have a protective effect are formed in region II. This is the region of surface film passivity. Certain corrosive sub-... [Pg.39]

Surface films are formed by corrosion on practically all commercial metals and consist of solid corrosion products (see area II in Fig. 2-2). It is essential for the protective action of these surface films that they be sufficiently thick and homogeneous to sustain the transport of the reaction products between metal and medium. With ferrous materials and many other metals, the surface films have a considerably higher conductivity for electrons than for ions. Thus the cathodic redox reaction according to Eq. (2-9) is considerably less restricted than it is by the transport of metal ions. The location of the cathodic partial reaction is not only the interface between the metal and the medium but also the interface between the film and medium, in which the reaction product OH is formed on the surface film and raises the pH. With most metals this reduces the solubility of the surface film (i.e., the passive state is stabilized). [Pg.139]

Dry abrasive blast cleaning should be used on new steelwork where the main contaminant is mill scale. For heavily rusted and pitted steelwork, increased durability can be obtained by the use of wet abrasive blasting where this is practicable. The water will be more effective in removing the potentially destructive and corrosive soluble iron-corrosion products that form at the bottom of corrosion pits. [Pg.134]

The study of corrosion is essentially the study of the nature of the metal reaction products (corrosion products) and of their influence on the reaction rate. It is evident that the behaviour of metals and alloys in most practical environments is highly dependent on the solubility, structure, thickness, adhesion, etc. of the solid metal compounds that form during a corrosion reaction. These may be formed naturally by reaction with their environment (during processing of the metal and/or during subsequent exposure) or as a result of some deliberate pretreatment process that is used to produce thicker films or to modify the nature of existing films. The importance of these solid reaction products is due to the fact that they frequently form a kinetic barrier that isolates the metal from its environment and thus controls the rate of the reaction the protection afforded to the metal will, of course, depend on the physical and chemical properties outlined above. [Pg.22]

In this example of the corrosion of zinc in a reducing acid of pH = 4, the corrosion product is Zn (aq.), but at higher pHs the thermodynamically stable phase will be Zn(OH)j and the equilibrium activity of Zn will be governed by the solubility product of Zn(OH)j and the pH of the solution at still higher pHs ZnOj-anions will become the stable phase and both Zn and Zn(OH)2 will become unstable. However, a similar thermodynamic approach may be adopted to that shown in this example. [Pg.60]

The potentials of film-free a-brass and /3-brass in solutions comparable to those existing inside the alloy at the advancing front of attack were found to be —0-38V and —0-56V (v. S.H.E.), respectively. It was also established, taking into account the activities of copper ions in equilibrium with the sparingly soluble corrosion product CU2CI2, that whereas Cu ions can be reduced to copper at —0 -16 V the reduction of Cu ions is possible only at potentials more negative than —0-41 V. Thus whereas the /3-phase of an a/3-brass can reduce both Cu and Cu ions, the a-brass can reduce only the Cu ion. [Pg.189]

The corrosion products may be soluble or insoluble. If insoluble, they usually reduce the rate of corrosion by isolating the substrate from the corrosive environment. Less commonly, they may stimulate corrosion by offering little physical protection while retaining moisture in contact with the metal surface for longer periods. [Pg.336]

Soluble corrosion products may increase corrosion rates in two ways. Firstly, they may increase the conductivity of the electrolyte solution and thereby decrease internal resistance of the corrosion cells. Secondly, they may act hygroscopically to form solutions at humidities at and above that in equilibrium with the saturated solution (Table 2.7). The fogging of nickel in SO2-containing atmospheres, due to the formation of hygroscopic nickel sulphate, exemplifies this type of behaviour. However, whether the corrosion products are soluble or insoluble, protective or non-protective, the... [Pg.336]

Oxygen from the atmosphere, dissolved in the electrolyte solution provides the cathode reactant in the corrosion process. Since the electrolyte solution is in the form of thin films or droplets, diffusion of oxygen from the atmosphere/electrolyte solution interface to the solution/metal interface is rapid. Moreover, convection currents within these thin films of solution may play a part in further decreasing concentration polarisation of this cathodic process . Oxygen may also oxidise soluble corrosion products to less soluble ones which form more or less protective barriers to further corrosion, e.g. the oxidation of ferrous species to the less soluble ferric forms in the rusting of iron and steel. [Pg.338]

Secondly, absorbent particles such as charcoal and soot are intrinsically inert but have surfaces or infrastructures that adsorb SO, and by either coadsorption of water vapour or condensation of water within the structure, catalyse the formation of a corrosive acid electrolyte solution. Dirt with soot assists the formation of patinae on copper and its alloys by retaining soluble corrosion products long enough for them to be converted to protective, insoluble basic salts. [Pg.339]

Chemical condensation This occurs when soluble corrosion products or atmospheric contaminants are present on the metal surface. When the humidity exceeds that in equilibrium with a saturated solution of the soluble species, a solution, initially saturated, is formed until equilibrium is established with the ambient humidity. The contaminants have already been detailed and of the corrosion products, obviously sulphates, chlorides and carbonates are most important in this context. However, in some cases there is a lack of reliable data on the vapour pressure exerted by saturated solutions of likely corrosion products. The useful data was summarised in Table 2.7. [Pg.342]

For some non-ferrous metals (copper, lead, nickel) the attack by sulphuric acid is probably direct with the formation of sulphates. Lead sulphate is barely soluble and gives good protection. Nickel and copper sulphates are deliquescent but are gradually converted (if not leached away) into insoluble basic sulphates, e.g. Cu Cu(OH)2)3SO4, and the metals are thus protected after a period of active corrosion. For zinc and cadmium the sulphur acids probably act by dissolution of the protective basic carbonate film. This reforms, consuming metal in the process, redissolves, and so on. Zinc and cadmium sulphates are formed in polluted winter conditions whereas in the purer atmospheres of the summer the corrosion products include considerable amounts of oxide and basic carbonate. ... [Pg.343]

Non-metallic impurities in liquid alkali metals play a major role in the corrosion of materials either by affecting metal solubilities, f orming spalli-ble corrosion products on the metal surface, promoting liquid metal embrittlement or bulk embrittlement of the surface or by sensitising the structure for further attack by other impurities e.g. O2. As in other corrosive environments the direction and magnitude of these impurity reactions... [Pg.428]

Lead is not generally attacked rapidly by salt solutions (especially the salts of the acids to which it is resistant). The action of nitrates and salts such as potassium and sodium chloride may be rapid. In potassium chloride the corrosion rate increases with concentration to a maximum in 0.05m solution, decreases with a higher concentration, and increases again in 2m solution. Only loosely adherent deposits are formed. In potassium bromide adherent deposits are formed, and the corrosion rate increases with concentration. The attack in potassium iodide is slow in concentrations up to 0.1m but in concentrated solutions rapid attack occurs, probably owing to the formation of soluble KPblj. In dilute potassium nitrate solutions (0.001 m and below) the corrosion product is yellow and is probably a mixture of Pb(OH)2 and PbO, which is poorly adherent. At higher concentrations the corrosion product is more adherent and corrosion is somewhat reduced Details of the corrosion behaviour of lead in various solutions of salts are given in Figure 4.16. [Pg.734]

In areas near the sea coast the rates of corrosion may be increased somewhat by the sea spray containing soluble chlorides, but the rates are still much lower than those prevailing in heavily polluted industrial areas. The white corrosion product which is sometimes found under these conditions probably consists of the basic chloride Zn20Cl2 . [Pg.817]

Product purity specifications determine how much soluble corrosion product can be tolerated. [Pg.18]

Ferrous hydroxide is soluble (9%) in pure water, but slight oxidation renders it appreciably less soluble. Thus in the presence of water and oxygen alone the corrosion product may be formed in close contact with the metal and attack will consequently be stifled. In the presence of an electrolyte such... [Pg.590]


See other pages where Corrosion products soluble is mentioned: [Pg.964]    [Pg.993]    [Pg.40]    [Pg.568]    [Pg.276]    [Pg.278]    [Pg.964]    [Pg.993]    [Pg.40]    [Pg.568]    [Pg.276]    [Pg.278]    [Pg.332]    [Pg.2422]    [Pg.165]    [Pg.30]    [Pg.358]    [Pg.361]    [Pg.361]    [Pg.412]    [Pg.424]    [Pg.437]    [Pg.501]    [Pg.699]    [Pg.63]    [Pg.374]    [Pg.428]    [Pg.450]    [Pg.482]    [Pg.483]   
See also in sourсe #XX -- [ Pg.2 , Pg.32 ]

See also in sourсe #XX -- [ Pg.2 , Pg.32 ]




SEARCH



Corrosion product solubility

Corrosion product solubility

Corrosion product solubility, dependence

Corrosion products

Products soluble

Solubility products

© 2024 chempedia.info