Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathodic partial reaction

Partial cathodic reaction Partial anodic reaction ... [Pg.167]

Since OH ions are formed in neutral media in the cathodic partial reaction according to Eq. (2-19), the overall cathodic reaction appears by Eqs. (2-19) and (2-58) ... [Pg.58]

Inhibitors are materials that reduce either one or both of the partial corrosion reactions as in Fig. 2-5. Anodic or cathodic inhibitors inhibit the anodic or cathodic reaction respectively so that the rest potential becomes either more positive or more negative. Most inhibitors, however, inhibit the anodic partial reaction. This is because the transfer of metal ions can be more easily restricted than that of electrons. [Pg.484]

It is not appropriate here to consider the kinetics of the various electrode reactions, which in the case of the oxygenated NaCl solution will depend upon the potentials of the electrodes, the pH of the solution, activity of chloride ions, etc. The significant points to note are that (a) an anode or cathode can support more than one electrode process and b) the sum of the rates of the partial cathodic reactions must equal the sum of the rates of the partial anodic reactions. Since there are four exchange processes (equations 1.39-1.42) there will be eight partial reactions, but if the reverse reactions are regarded as occurring at an insignificant rate then... [Pg.81]

Fig. 12.4 Corrosion diagram for a zinc diecasting in a nickel plating bath, pH 2-2. There are two possible cathodic reactions, hydrogen evolution (H) and nickel ion reduction (AO. The corrosion current is the sum of the partial cathode currents. Even with live entry the potential is still too high to suppress corrosion, though the rate is reduced to... Fig. 12.4 Corrosion diagram for a zinc diecasting in a nickel plating bath, pH 2-2. There are two possible cathodic reactions, hydrogen evolution (H) and nickel ion reduction (AO. The corrosion current is the sum of the partial cathode currents. Even with live entry the potential is still too high to suppress corrosion, though the rate is reduced to...
When an electrode is at equilibrium the rate per unit area of the cathodic reaction equals that of the anodic reaction (the partial currents) and there is no net transfer of charge the potential of the electrode is the equilibrium potential and it is said to be unpolarised ... [Pg.1196]

Corrosion Potential (mixed potential, compromise potential) potential resulting from the mutual polarisation of the interfacial potentials of the partial anodic and cathodic reactions that constitute the overall corrosion reaction. [Pg.1365]

Partial Reactions anodic reaction (reactions) and cathodic reaction (reactions) constituting a single exchange process or a corrosion reaction. [Pg.1371]

From a kinetic point of view a describes the influence of a change of the electrode potential on the energy of activation for the charge transfer reaction which in turn influences the partial current density. The transfer coefficients % for the anodic charge transfer reaction and for the cathodic reaction add up according to... [Pg.265]

It had been shown in Section 2.2 that at the equilibrium otential, the net (external) current density i is zero, but partial cimen densities i and i of the anodic and cathodic reaction exist for which the relation i =i = f holds where i° is the exchange current density. The value of i increases, that of i decreases, when the potential is made more positive but i decreases and i increases when the potential is made more negative. The net current density i is the difference of the partial current densities ... [Pg.80]

The oxides often are nonstoichiometric (with an excess or dehcit of oxygen). Many oxides are semiconducting, and their conductivity can be altered by adding various electron donors or acceptors. Relative to metals, the applications of oxide catalysts in electrochemistry are somewhat limited. Cathodic reactions might induce a partial or complete reduction of an oxide. For this reason, oxide catalysts are used predominantly (although not exclusively) for anodic reactions. In acidic solutions, many base-metal oxides are unstable and dissolve. Their main area of use, therefore, is in alkaline or neutral solutions. [Pg.544]

If cathodic reactions other than (2) or (3) can take place, they should be considered and allowed for with due consideration of their stoichiometry under the conditions of the experiment. It is obvious that partial reduction of some cations, such as... [Pg.255]

This shows that for both net anodic and net cathodic currents at the experimental electrode, the sum of the cathodic partial current at this electrode and the current at the counter electrode (anodic or cathodic) is equivalent to the anodic metal dissolution reaction. The combined cathodic reactions will thus give rise to titration corresponding to the metal dissolution rate. [Pg.259]

The reaction of H2 and O2 produces H2O. When a carbon-containing fuel is involved in the anode reaction, CO2 is also produced. For MCFCs, CO2 is required in the cathode reaction to maintain an invariant carbonate concentration in the electrolyte. Because CO2 is produced at the anode and consumed at the cathode in MCFCs, and because the concentrations in the anode and cathode feed streams are not necessarily equal, the Nemst equation in Table 2-2 includes the CO2 partial pressure for both electrode reactions. [Pg.55]

Current-Potential Relationship for Partial Reactions, Partial i = /(A(/)) functions can be derived by joining equations expressing the rate of electrochemical reactions in terms of current [Eqs. (6.18) and (6.20)] and equations expressing the rate constant as a function of potential [Eqs. (6.31) and (6.32)]. Thus, the cathodic partial current density i is obtained from Eqs. (6.18) and (6.31) to yield... [Pg.84]

Kinetics, The major factors determining the rate of the partial cathodic reaction are concentrations of metal ions and ligands, pH of the solution, and type and concentration of additives. These factors determine the kinetics of partial cathodic reaction in a general way, as given by the fundamental electrochemical kinetic equations discussed in Chapter 6. [Pg.149]

Relationships of other type are observed in the case where both the conjugated reactions proceed through the same band (Fig. 13b). For example, the cathodic reaction (42b) can take place with the participation of valence electrons rather than conduction electrons, as was assumed above. Thus, reduction of an oxidizer leads to the injection of holes into the semiconductor, which are used then in the anodic reaction of semiconductor oxidation. In other words, the cathodic partial reaction provides the anodic partial reaction with free carriers of an appropriate type, so that in this case corrosion kinetics is not limited by the supply of holes from the bulk of a semiconductor to its surface. Here the conjugated reactions are in no way independent ones. [Pg.284]

Thermodynamic conditions needed for an electrode reaction, including the partial reaction of corrosion, to proceed can be written for the above-considered anodic and cathodic reactions, respectively, in the form [cf. Eq. (7)]... [Pg.286]

Here corrosion occurs even in darkness. In the simplest case where the partial cathodic reaction proceeds exclusively through the conduction band and the anodic reaction through the valence band, the corrosion rate is limited, as was shown in Section 8, by the supply of minority carriers to the surface, irrespective of the type of sample conductivity. Therefore, in darkness the corrosion rate is low. Illumination accelerates corrosion. This case is similar to case (a), but with the difference that the role of anodic polarization is played by chemical polarization with the help of an oxidizer introduced into the solution (see Section 13 for examples). [Pg.295]

As a first example of the use of reaction mechanism graphs, consider the electrochemistry of molten carbonate fuel cell (MCFC) cathodes. These cathodes are typically nickel-oxide porous electrodes with pores partially filled with a molten carbonate electrolyte. Oxygen and carbon dioxide are fed into the cathode through the vacant portions of the pores. The overall cathodic reaction is 02 + 2C02 + 4e / 2C03=. This overall reaction can be achieved through a number of reaction mechanisms two such mechanisms are the peroxide mechanism and the superoxide-peroxide mechanism, and these are considered next. [Pg.206]

Thus, factors that affect the rate of corrosion are essentially pH, partial pressure of oxygen, and solution conductivity there are also other less general factors that will be specified in the following sections. The half-reactions have to occur at different sites on the interface in order to form an electrical circuit, and thence the importance of solution conductivity. In particular cases other cathodic reactions can take place due to, for example, reduction of a species already present in solution such as Fe3+ reduced to Fe2+. [Pg.354]

An important measurement is the corrosion potential, Ecor. This is the open circuit potential, whose value can change with time. ECOT is a mixed potential, since the anodic and cathodic reactions are different. The partial anodic or cathodic current that flows at this potential is called the corrosion current, 7cor, and is directly related to the rate constant of the electrode reaction. [Pg.356]

In this expression, i is current density, p is density, n is the number of electron equivalents per mole of dissolved metal, M is the atomic weight of the metal, F is Faraday s constant, r is pit radius, and t is time. The advantage of this technique is that a direct determination of the dissolution kinetics is obtained. A direct determination of this type is not possible by electrochemical methods, in which the current recorded is a net current representing the difference between the anodic and the cathodic reaction rates. In fact, a comparison of this nonelectrochemical growth rate determination with a comparable electrochemical growth rate determination shows that the partial cathodic current due to proton reduction in a growing pit in A1 is about 15% of the total anodic current (26). [Pg.267]


See other pages where Cathodic partial reaction is mentioned: [Pg.593]    [Pg.307]    [Pg.65]    [Pg.1461]    [Pg.381]    [Pg.382]    [Pg.1754]    [Pg.236]    [Pg.254]    [Pg.172]    [Pg.59]    [Pg.447]    [Pg.145]    [Pg.107]    [Pg.12]    [Pg.72]    [Pg.139]    [Pg.15]    [Pg.1835]    [Pg.1754]    [Pg.201]    [Pg.219]    [Pg.274]    [Pg.121]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Additives cathodic partial reaction

Cathode reaction

Cathodic partial

Cathodic reactions

Charge cathodic partial reaction

Copper cathodic partial reaction

Electroless deposition cathodic partial reaction

Kinetics cathodic partial reaction

Partial reaction

The Cathodic Partial Reaction. Kinetic Scheme

© 2024 chempedia.info