Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid metals alkali

Liquid metals, however, present several disadvantages. Their weights must be considered with regard to equipment design. Additionally, Hquid metals are difficult to contain and special pumps must be used for system safety. Alkali metals react violentiy with water and bum ia air. Liquid metals also may become radioactive whea used for cooling auclear reactors (qv). [Pg.505]

Since tire alkali and alkaline metals have such a high affinity for oxygen, sulphur aird selenium they are potentially useful for the removal of these iron-metallic elements from liquid metals with a lower affinity for these elements. Since the hairdling of these Group I and II elements is hazardous on the industrial scale, their production by molten salt electrolysis during metal rehning is an attractive alternative. Ward and Hoar (1961) obtained almost complete removal of sulphur, selenium and tellurium from liquid copper by the electrolysis of molten BaCla between tire metal which functioned as the cathode, and a graphite anode. [Pg.363]

Non-metallic impurities in liquid alkali metals play a major role in the corrosion of materials either by affecting metal solubilities, f orming spalli-ble corrosion products on the metal surface, promoting liquid metal embrittlement or bulk embrittlement of the surface or by sensitising the structure for further attack by other impurities e.g. O2. As in other corrosive environments the direction and magnitude of these impurity reactions... [Pg.428]

The elements of primary importance in this context are oxygen, nitrogen, carbon and hydrogen. In the technology of the liquid alkali metals they play a predominant rdle. Their origin is associated with leakages in the circuit, impurities remaining after construction or residual impurities in the liquid metal. It is convenient to discuss these four elements separately. [Pg.431]

Nickel-manganese-palladium brazes are resistant to attack by molten alkali metals and And applications in sodium-cooled turbine constructions. Their freedom from silver and other elements of high thermal neutron-capture cross-section allows them to be used in liquid-metal-cooled nuclear reactors. [Pg.937]

The alkali metals also release their valence electrons when they dissolve in liquid ammonia, but the outcome is different. Instead of reducing the ammonia, the electrons occupy cavities formed by groups of NH3 molecules and give ink-blue metal-ammonia solutions (Fig. 14.14). These solutions of solvated electrons (and cations of the metal) are often used to reduce organic compounds. As the metal concentration is increased, the blue gives way to a metallic bronze, and the solutions begin to conduct electricity like liquid metals. [Pg.709]

Many of the techniques available to purify alkali metals were initially developed to use with liquid sodium as a consequence of its large-scale application in liquid-metal-cooled fast-breeder reactors. These techniques can be summarized as filtration or cold trapping distillation or chemical (gettering). [Pg.324]

Ionic LCs are interesting systems because they combine the properties of LCs with those of ionic liquids. Although alkali metal soaps were among the first thermotropic LCs to be systematically studied, ionic liquid crystalline derivatives have been reported less frequently than those based on neutral molecular and macromolecular species [39]. When the halide of [AuX(CNR)] complexes is substituted by a second isocyanide, ionic complexes [Au(CNR)2][Y] [R = C6H40C H2 + i (27a),... [Pg.379]

Copper oxides give rise to numerous accidents. When copper (II) oxide was heated with boron, it gave a highly violent reaction, which caused the melting of the Pyrex container. This is true for alkali metals and titanium as well as aluminium. The reactions lead to liquid metal copper. The emissions of glowing compounds make the reaction very dangerous. [Pg.207]

Effect of molecular diffusion and vapor-phase chemical reactions Liquid metal vapors consist of molecules and gaseous atoms. Working with alkali metals, Ewing et al. (1967) found that the molecules are principally dimers and tetramers. The... [Pg.140]

The properties of liquid metals can cause flow instability (oscillation) because of vapor pressure—temperature relationship. Most liquid metals, especially alkali metals, show a greater change in saturation temperature, corresponding to a given change of pressure, than does water. In a vertical system under gravitational force, the change of static pressure could appreciably alter the saturation temperature such that explosion -type flow oscillation would occur that would result in liquid... [Pg.392]

Dean, R A., R. S. Dougall, and L. S. Tong, 1971, Effect of Vapor Injection on Critical Heat Flux in a Subcooled R-l 13 (Freon) Flow, Proc. Int. Symp. on Two-Phase Flow Systems, Haifa, Israel. (6) Deane, C. W., and W. M. Rohsenow, 1969, Mechanism and Behavior of Nucleate Boiling Heat Transfer to the Alkali Liquid Metals, USAEC Rep. DSR 76303-65, Massachusetts Institute of Technology, Cambridge, MA Also in 1970, Liquid Metal Heat Transfer and Fluid Dynamics J. C. Chen and A. A. Bishop, Eds., ASME Winter Annual Meeting, New York. (4)... [Pg.529]

Palladium Paraformaldehyde Paraldehyde Pentaborane-9 Pentacarbonyliron Arsenic, carbon, ozonides, sulfur, sodium tetrahydridoborate Liquid oxygen Alkalies, HCN, iodides, nitric acid, oxidizers Dimethylsulfoxide Acetic acid, nitric oxide, transition metal halides, water, zinc... [Pg.1479]

Solutions of metals in liquid ammonia conduct electricity better than any salt in any liquid and the main current carrier is the solvated electron. This implies that the electron gets free from the parent metal atom sodium and occupy cavities in the liquid. At higher alkali metal concentrations the solutions are copper coloured and have a metallic lustre and all electrical conductivity studies indicate that they are very similar to liquid metals. [Pg.301]

Sodium is produced by an electrolytic process, similar to the other alkali earth metals. (See figure 4.1). The difference is the electrolyte, which is molten sodium chloride (NaCl, common table salt). A high temperature is required to melt the salt, allowing the sodium cations to collect at the cathode as liquid metallic sodium, while the chlorine anions are liberated as chlorine gas at the anode 2NaCl (salt) + electrolysis —> Cl T (gas) + 2Na (sodium metal). The commercial electrolytic process is referred to as a Downs cell, and at temperatures over 800°C, the liquid sodium metal is drained off as it is produced at the cathode. After chlorine, sodium is the most abundant element found in solution in seawater. [Pg.51]

Carbon disulfide is an extremely flammable liquid, the closed cup flash point being -22°F (-30°C). Its autoignition temperature is 90°C (194°F). Its vapors form explosive mixtures with air, within a wide range of 1.3 to 50.0% by volume in air. Reactions with certain substances can progress to explosive violence. They include finely divided metals, alkali metals, azides, fulminates, and nitrogen dioxide. [Pg.187]


See other pages where Liquid metals alkali is mentioned: [Pg.77]    [Pg.424]    [Pg.141]    [Pg.156]    [Pg.349]    [Pg.350]    [Pg.350]    [Pg.352]    [Pg.353]    [Pg.47]    [Pg.69]    [Pg.101]    [Pg.110]    [Pg.141]    [Pg.170]    [Pg.190]    [Pg.282]    [Pg.490]    [Pg.200]    [Pg.363]    [Pg.252]    [Pg.146]    [Pg.131]    [Pg.11]    [Pg.323]    [Pg.242]    [Pg.447]   
See also in sourсe #XX -- [ Pg.7 , Pg.11 ]




SEARCH



© 2024 chempedia.info