Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exhaust, automotive

ALUMDJUMCOMPOUNDS - ALUMINIUMOXIDE(ALUMINA) - ACTIVATED] (Vol 2) -in automotive exhaust catalyst [EXHAUST CONTROL, AUTOMOTIVE] (Vol 9)... [Pg.252]

A recently developed drying appHcation for zeoHtes is the prevention of corrosion in mufflers (52,55). Internal corrosion in mufflers is caused primarily by the condensation of water and acid as the system cools. A unique UOP zeoHte adsorption system takes advantage of the natural thermal cycling of an automotive exhaust system to desorb the water and acid precursors. [Pg.280]

Vehicle Emissions. Gasohol has some automotive exhaust emissions benefits because adding oxygen to a fuel leans out the fuel mixture, producing less carbon monoxide [630-08-2] (CO). This is tme both for carbureted vehicles and for those having electronic fuel injection. [Pg.424]

In the outdoor environment, the high concentrations of sulfur and nitrogen oxides from automotive and industrial emissions result in a corrosion having both soluble and insoluble corrosion products and no pacification. The results are clearly visible on outdoor bronze sculpture (see Airpollution Exhaust CONTROL, automotive Exhaust conthol, industrial). [Pg.425]

Automotive Emission Control Catalysts. Air pollution (qv) problems caused by automotive exhaust emissions have been met in part by automotive emission control catalysts (autocatalysts) containing PGMs. In the United States, all new cars have been requited to have autocatalyst systems since 1975. In 1995, systems were available for control of emissions from both petrol and diesel vehicles (see Exhaust control, automotive). [Pg.172]

Cordierite [12182-53-5] Mg Al Si O g, is a ceramic made from talc (25%), kaolin (65%), and Al O (10%). It has the lowest thermal expansion coefficient of any commercial ceramic and thus tremendous thermal shock resistance. It has traditionally been used for kiln furniture and mote recently for automotive exhaust catalyst substrates. In the latter, the cordierite taw materials ate mixed as a wet paste, extmded into the honeycomb shape, then dried and fired. The finished part is coated with transition-metal catalysts in a separate process. [Pg.302]

Municipal incinerators are often targeted as a primary cause of acid rain. In fact, power plants burning fossil fuels, which produce sulfur dioxide and nitrogen oxide, are actually the leading cause of acid rain, along with automotive exhaust (176,177). In Europe and Japan, studies show that only about 0.02% of all acid rain can be traced to incineration of PVC (178). [Pg.509]

The doped Zr02 stmctures are used as electrochemical sensors, as, for example, when used to detect oxygen in automotive exhaust (see Exhaust CONTROL, automotive). The sensor voltage is governed by the Nemst equation (eq. 17) where the activities are replaced by oxygen partial pressures and the air inside the chamber is used as reference. [Pg.355]

An interesting and novel use of a soHd desiccant, the reduction of cold condensate corrosion in automotive exhaust systems, illustrates a hybrid closed—open system. Internal corrosion occurs in mufflers when the water vapor in the exhaust condenses after the engine is turned off and the muffler cools. Carbon dioxide dissolves in the condensate to form an acidic soup. In an essentially closed static drying step, an acid- and heat-resistant desiccant located in the muffler adsorbs water vapor from the exhaust gas as it cools to prevent formation of corrosive acidic condensate. When the engine is restarted, the system becomes open, and the desiccant is regenerated by the hot exhaust gas to be ready for the next cooldown step (19). [Pg.510]

G. B. Fisher and co-workers. The Kole of Ceria in Automotive Exhaust Catalysis and OBD-II Catalyst Monitoring, SAE 931034, Society of Automotive Engineers, Warrendale, Pa., 1993. [Pg.496]

Nonselective catalytic reduction systems are often referred to as three-way conversions. These systems reduce NO, unbumed hydrocarbon, and CO simultaneously. In the presence of the catalyst, the NO are reduced by the CO resulting in N2 and CO2 (37). A mixture of platinum and rhodium has been generally used to promote this reaction (37). It has also been reported that a catalyst using palladium has been used in this appHcation (1). The catalyst operation temperature limits are 350 to 800°C, and 425 to 650°C are the most desirable. Temperatures above 800°C result in catalyst sintering (37). Automotive exhaust control systems are generally NSCR systems, often shortened to NCR. [Pg.512]

Automotive Exhaust System Repair Tire Retreading and Repair Paint... [Pg.264]

Serious research in catalytic reduction of automotive exhaust was begun in 1949 by Eugene Houdry, who developed mufflers for fork lift trucks used in confined spaces such as mines and warehouses (18). One of the supports used was the monolith—porcelain rods covered with films of alumina, on which platinum was deposited. California enacted laws in 1959 and 1960 on air quality and motor vehicle emission standards, which would be operative when at least two devices were developed that could meet the requirements. This gave the impetus for a greater effort in automotive catalysis research (19). Catalyst developments and fleet tests involved the partnership of catalyst manufacturers and muffler manufacturers. Three of these teams were certified by the California Motor Vehicle Pollution Control Board in 1964-65 American Cyanamid and Walker, W. R. Grace and Norris-Thermador, and Universal Oil Products and Arvin. At the same time, Detroit announced that engine modifications by lean carburation and secondary air injection enabled them to meet the California standard without the use of catalysts. This then delayed the use of catalysts in automobiles. [Pg.62]

Evaluation of Catalysts As Automotive Exhaust Treatment Devices," Report of the Catalyst Panel to the Committee on Motor Vehicle Emissions, National Academy of Sciences, Washington, D.C., 1973. [Pg.127]

The effect of alkali addition on the adsorption of NO on metal surfaces is of great importance due to the need of development of efficient catalysts for NO reduction in stationary and automotive exhaust systems. Similar to CO, NO always behaves as an electron acceptor in presence of alkalis. [Pg.43]

The effect of alkali presence on the adsorption of oxygen on metal surfaces has been extensively studied in the literature, as alkali promoters are used in catalytic reactions of technological interest where oxygen participates either directly as a reactant (e.g. ethylene epoxidation on silver) or as an intermediate (e.g. NO+CO reaction in automotive exhaust catalytic converters). A large number of model studies has addressed the oxygen interaction with alkali modified single crystal surfaces of Ag, Cu, Pt, Pd, Ni, Ru, Fe, Mo, W and Au.6... [Pg.46]

The reduction of NO by propene is of great importance in automotive exhaust catalysis. [Pg.451]

I.V. Yentekakis, C.A. Pliangos, V.G. Papadakis, X.E. Verykios, and C.G. Vayenas, Support and NEMCA-induced Promotional Effects on the Activity of Automotive Exhaust Catalysts in A. Frennet and Journal-M. Bastin (eds.) Catalysis and Automotive Pollution Control HI, Stud. Surf. Sci. Catal. 96, 375-385 (1995). [Pg.512]

C. Pliangos, I.V. Yentekakis, V.G. Papadakis, C.G. Vayenas, and X.E. Verykios, Support-induced promotional effects on the activity of automotive exhaust catalysts 1. The case of oxidation of light hydrocarbons, Appl. Catal. B 14, 161-173 (1997). [Pg.512]

The ultimate direct utilization of electrochemical promotion in commercial reactors (in the chemical industry and in automotive exhaust catalysis) will depend on several technical and economical factors6 which are intimately related to the following technical considerations and problems ... [Pg.515]

Challenges in Control of Emission from Automotive Exhaust... [Pg.154]


See other pages where Exhaust, automotive is mentioned: [Pg.15]    [Pg.32]    [Pg.164]    [Pg.165]    [Pg.419]    [Pg.487]    [Pg.613]    [Pg.672]    [Pg.724]    [Pg.1]    [Pg.156]    [Pg.121]    [Pg.120]    [Pg.281]    [Pg.495]    [Pg.388]    [Pg.57]    [Pg.63]    [Pg.560]    [Pg.154]    [Pg.154]    [Pg.154]    [Pg.192]   
See also in sourсe #XX -- [ Pg.154 , Pg.155 , Pg.156 ]

See also in sourсe #XX -- [ Pg.462 ]




SEARCH



Automotive exhaust catalysi

Automotive exhaust catalysi mechanism

Automotive exhaust catalysis

Automotive exhaust cleaning

Automotive exhaust composition

Automotive exhaust conversion catalysis

Automotive exhaust converter

Automotive exhaust gases

Automotive exhaust purification

Automotive exhaust systems

Automotive exhaust, particulate

Catalysts automotive exhaust

Challenges in Control of Emission from Automotive Exhaust

EXHAUST CONTROL, AUTOMOTIVE

Emission automotive exhaust

Exhaust automotive emission control

Exhaust, automotive combustion engine

Exhaust, particulate matter automotive

Platinum active automotive exhaust

Poison automotive exhaust

Properties of Automotive Exhaust Gases

Rhodium, active automotive exhaust

Rhodium, active automotive exhaust catalysts

© 2024 chempedia.info