Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion inhibitors phosphates

Corrosion inhibitors partial esters of succinic acid, fatty acids, sulfonates, phenates, amine phosphates. [Pg.279]

Corrosion inhibitors are used to protect both the container and the metal substrate being stripped. Acid activated removers use inhibitors to block corrosion on active metals. Typical inhibitors are propylene oxide [75-56-9], butylene oxide [9106-88-7], triethylammonium phosphates, and sodium ben2oate [532-32-1] (see Corrosion and corrosion control). [Pg.551]

The most effective way to prevent SCC in both stainless steel and brass systems is to keep the system clean and free of deposits. An effective deposit control treatment is imperative. A good corrosion inhibitor is also beneficial. Chromate and phosphate have each been used successfully to prevent the SCC of stainless steel in chloride solutions. [Pg.268]

Organophosphonates are similar to polyphosphates in chelation properties, but they are stable to hydrolysis and replace the phosphates where persistence in aqueous solution is necessary. They are used as scale and corrosion inhibitors (52) where they function via the threshold effect, a mechanism requiring far less than the stoichiometric amounts for chelation of the detrimental ions present. Threshold inhibition in cooling water treatment is the largest market for organophosphonates, but there is a wide variety of other uses (50). [Pg.394]

Dissolved mineral salts The principal ions found in water are calcium, magnesium, sodium, bicarbonate, sulphate, chloride and nitrate. A few parts per million of iron or manganese may sometimes be present and there may be traces of potassium salts, whose behaviour is very similar to that of sodium salts. From the corrosion point of view the small quantities of other acid radicals present, e.g. nitrite, phosphate, iodide, bromide and fluoride, have little significance. Larger concentrations of some of these ions, notably nitrite and phosphate, may act as corrosion inhibitors, but the small quantities present in natural waters will have little effect. Some of the minor constituents have other beneficial or harmful effects, e.g. there is an optimum concentration of fluoride for control of dental caries and very low iodide or high nitrate concentrations are objectionable on medical grounds. [Pg.354]

There has been much activity in this field of corrosion inhibition in recent years which appears to have been prompted by health and safety requirements. As with engine coolants, the use of nitrites, particularly where amines may also be present, needs to be considered carefully. Nitrites have been widely used in cutting, grinding, penetrating, drawing and hydraulic oils. Suggested replacements for nitrites and/or amines make use, inter alia, of various borate compounds, e.g. monoalkanolamide borates. Molybdates have also been proposed in conjunction with other inhibitors, e.g. carbox-ylates, phosphates, etc . Water-based metalworking fluids usually contain other additives in addition to corrosion inhibitors, e.g. for hard-water stability, anti-foam, bactericidal proderties and so on. Thus, claims are made for oil-in-water emulsions with bactericidal and anti-corrosion properties. [Pg.800]

To reduce the effects of corrosion, inhibitors are added, typically sodium chromate in the salt brines and sodium phosphate in the glycols. These are alkaline salts and help to counteract the effects of oxidation, but periodic checks should be taken, and borax or similar alkali added if the pH value falls below 7.0 or 7.5 [1]. [Pg.152]

The primary types of corrosion inhibitor treatments employed are generally based on inorganic chemicals such as sodium nitrite (together with combinations of borate, silicate, molybdate, and phosphate) and the addition of even 2 to 3 pints (0.95-1.4 liters) to a boiler can immediately raise the TDS in the BW to a level at which priming can occur. Secondary problems include an associated rise in the level of BW suspended solids and sludge. [Pg.183]

The PCAs tend to exhibit good performance as iron dispersants, phosphate stabilizers, and corrosion inhibitors, with additional good thermal and hydrolytic stability. [Pg.451]

Alkalinity boosters, which are vitally necessary to enable carbonate, phosphate, balanced polymer (polymer plus phosphate or chelant), and some other program types to function, are perhaps best described as conjunctional treatments, whereas oxygen scavengers, antifoams, and condensate line corrosion inhibitors are adjuncts. Programs such as phosphate-tannin mixtures are sometimes described as adjunct treatments. The chemistries and applications of various types of conjunctional treatments and adjuncts are described in this chapter. [Pg.479]

The most common corrosion inhibitors, which may form protective films on the metal surfaces, are borates, molybdates, nitrates, nitrites, phosphates, silicates, amines, triazoles, and thiazioles (e.g., monoethanolamine, urotropin, thiodiglycol, and mercaptobenzothiazole). The addition of such inhibitors does not effectively protect against corrosion [137]. Some corrosion inhibitors are shown in Figure 14-3. [Pg.188]

R. L. Martin. The reaction product of nitrogen bases and phosphate esters as corrosion inhibitors. Patent EP 567212, 1993. [Pg.428]

A. Naraghi. Corrosion inhibitor containing phosphate groups. Patent US 5611991,1997. [Pg.439]

A. Naraghi and N. Grahmann. Corrosion inhibitor blends with phosphate esters. Patent US 5611992,1997. [Pg.439]

In spite of their toxicity, alkyl phosphites have been used extensively as lubricant additives, corrosion inhibitors, and antioxidants. In addition to their use as intermediates in synthesis, organophosphorus compounds are useful for separating heavy metals by solvent extraction. Several insecticides that were formerly in widespread use are derivatives of organic phosphates. Two such compounds are malathion and parathion. [Pg.512]

Phosphate esters ( used in corrosion inhibitors in lubricating oils and hydraulic fluids). [Pg.188]

Although chromate is the best aqueous corrosion inhibitor available, its use has been severely curtailed due to toxicity and environmental concerns ( ). One of the more successful non-chromate treatments involves the use of phosphate/phosphonate combinations. This treatment employs high levels of orthophosphate to promote passivation of the metal surfaces. Therefore, it is important to control calcium phosphate crystallization so that high levels of orthophosphate may be maintained in the system without fouling or impeding heat-transfer functions. [Pg.283]


See other pages where Corrosion inhibitors phosphates is mentioned: [Pg.214]    [Pg.214]    [Pg.333]    [Pg.10]    [Pg.199]    [Pg.506]    [Pg.244]    [Pg.189]    [Pg.189]    [Pg.190]    [Pg.411]    [Pg.349]    [Pg.257]    [Pg.151]    [Pg.440]    [Pg.957]    [Pg.453]    [Pg.672]    [Pg.337]    [Pg.787]    [Pg.788]    [Pg.795]    [Pg.799]    [Pg.882]    [Pg.971]    [Pg.177]    [Pg.400]    [Pg.419]    [Pg.552]    [Pg.102]    [Pg.479]    [Pg.649]    [Pg.347]    [Pg.263]    [Pg.265]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Corrosion inhibitors

Phosphates, inhibitors

© 2024 chempedia.info