Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds trace analysis

Applications Sector instruments are applied for niche applications such as high-resolution measurements and fundamental ion chemistry studies. Magnetic sector mass spectrometers remain the instrument of choice in areas of target compound trace analysis, accurate mass measurement and isotope ratio measurement. [Pg.388]

Thin film columns are useful for high-boiling compounds, trace analysis, and for instanees when column bleeding must be minimized at high temperatures. [Pg.355]

Future development will continue for a highly productive multi-compound trace analysis for the quantitation of mostly regulated target compounds. In addition, especially to comply with the aspects of food safety and product-safety requirements also non-targeted analytical techniques for the identification of potentially hazardous contaminants will evolve applying combined full scan and accurate mass capabilities. [Pg.4]

Liquid Ghromatography/Mass Spectrometry. Increased use of Hquid chromatography/mass spectrometry (Ic/ms) for stmctural identification and trace analysis has become apparent. Thermospray Ic/ms has been used to identify by-products in phenyl isocyanate precolumn derivatization reactions (74). Five compounds resulting from the reaction of phenyUsocyanate and the reaction medium were identified two from a reaction between phenyl isocyanate and methanol, two from the reaction between phenyl isocyanate and water, and one from the polymerisation of phenyl isocyanate. There were also two reports of derivatisation to enhance either the response or stmctural information from thermospray Ic/ms for linoleic acid hpoxygenase metabohtes (75) and for cortisol (76). [Pg.246]

The alkah flame-ionisation detector (AFID), sometimes called a thermionic (TID) or nitrogen—phosphoms detector (NPD), has as its basis the fact that a phosphoms- or nitrogen-containing organic material, when placed ia contact with an alkaU salt above a flame, forms ions ia excess of thermal ionic formation, which can then be detected as a current. Such a detector at the end of a column then reports on the elution of these compounds. The mechanism of the process is not clearly understood, but the enhanced current makes this type of detector popular for trace analysis of materials such as phosphoms-containing pesticides. [Pg.108]

Trace enrichment and sample clean-up are probably the most important applications of LC-LC separation methods. The interest in these LC-LC techniques has increased rapidly in recent years, particularly in environmental analysis and clean-up and/or trace analysis in biological matrices which demands accurate determinations of compounds at very low concentration levels present in complex matrices (12-24). Both sample clean-up and trace enrichment are frequently employed in the same LC-LC scheme of course, if the concentration of the analytes of interest are Sufficient for detection then only the removal of interfering substances by sample clean-up is necessary for analysis. [Pg.117]

When columns of the same polarity are used, the elution order of components in GC are not changed and there is no need for trapping. However, when columns of different polarities are used trapping or heart-cutting must be employed. Trapping can be used in trace analysis for enrichment of samples by repetitive preseparation before the main separation is initiated and the total amount or part of a mixture can then be effectively and quantitatively transferred to a second column. The main considerations for a trap are that it should attain either very high or very low temperatures over a short period of time and be chemically inactive. The enrichment is usually carried out with a cold trap, plus an open vent after this, where the trace components are held within the trap and the excess carrier gas is vented. Then, in the re-injection mode the vent behind the trap is closed, the trap is heated and the trapped compounds can be rapidly flushed from the trap and introduced into the second column. Peak broadening and peak distortion, which could occur in the preseparation, are suppressed or eliminated by this re-injection procedure (18). [Pg.317]

Chemical and catalytic. This grade of platinum is for conversion to catalysts, gauzes and chemical compounds. Spectrographic analysis is employed to control the presence of trace impurities harmful in these applications. [Pg.942]

Throughout this book the use of a number of standard analytical samples is recommended in order that practical experience may be gained on substances of known composition. In addition, standard reference materials of environmental samples for trace analysis are used for calibration standards, and pure organic compounds are employed as standard materials for elemental analysis. [Pg.830]

Solid-surface room-temperature phosphorescence (RTF) is a relatively new technique which has been used for organic trace analysis in several fields. However, the fundamental interactions needed for RTF are only partly understood. To clarify some of the interactions required for strong RTF, organic compounds adsorbed on several surfaces are being studied. Fluorescence quantum yield values, phosphorescence quantum yield values, and phosphorescence lifetime values were obtained for model compounds adsorbed on sodiiun acetate-sodium chloride mixtures and on a-cyclodextrin-sodium chloride mixtures. With the data obtained, the triplet formation efficiency and some of the rate constants related to the luminescence processes were calculated. This information clarified several of the interactions responsible for RTF from organic compounds adsorbed on sodium acetate-sodium chloride and a-cyclodextrin-sodium chloride mixtures. Work with silica gel chromatoplates has involved studying the effects of moisture, gases, and various solvents on the fluorescence and phosphorescence intensities. The net result of the study has been to improve the experimental conditions for enhanced sensitivity and selectivity in solid-surface luminescence analysis. [Pg.155]

Solid-surface luminescence analysis involves the measurement of fluorescence and phosphorescence of organic compounds adsorbed on solid materials. Several solid matrices such as filter paper, silica with a polyacrylate binder, sodium acetate, and cyclodextrins have been used in trace organic analysis. Recent monographs have considered the details of solid-surface luminescence analysis (1,2). Solid-surface room-temperature fluorescence (RTF) has been used for several years in organic trace analysis. However, solid-surface room-temperature phosphorescence (RTF) is a relatively new technique, and the experimental conditions for RTF are more critical than for RTF. [Pg.155]

Interactions in Solid-Surface Luminescence Temperature Variation. Solid-surface luminescence analysis, especially solid-surface RTF, is being used more extensively in organic trace analysis than in the past because of its simplicity, selectivity, and sensitivity (,1,2). However, the interactions needed for strong luminescence signals are not well understood. In order to understand some of the interactions in solid-surface luminescence we recently developed a method for the determination of room-temperature fluorescence and phosphorescence quantum yields for compounds adsorbed on solid surfaces (27). In addition, we have been investigating the RTF and RTF properties of the anion of p-aminobenzoic acid adsorbed on sodium acetate as a model system. Sodium acetate and the anion of p-aminobenzoic acid have essentially no luminescence impurities. Also, the overall system is somewhat easier to study than compounds adsorbed on other surfaces, such as filter paper, because sodium acetate is more simple chemically. [Pg.160]

We inferred that these properties might be exploited in a series of unique derivatizing reagents designed specifically for trace analysis of organic compounds using HPLC separation and fluorescence detection. The use of these pyridones for the analytical purposes reported here is based on their acidic properties. Treatment of a lH-2-pyridone with a base converts the pyridone to its salt. [Pg.207]

Bronlc acids containing electron-capturing subsitituents were developed by Poole and co-workers. Table 8.19 (451,535,536). In terms of volatility, stability of derivatives, and response to the electron-capture detector the 3,5-bis(trifluoromethyl)benzeneboronic acid, 2,4-dichlorobenzeneboronic acid, and 4-bromo-benzeneboronic acid were recommended for general applications. In particular, the 3,5-bis(trifluoromethyl)benzeneboronate derivatives are remarkably volatile, more so than the benzeneboronates, and are suitable for the analysis of bifunctional compounds of low volatility. All the benzeneboronate derivatives are susceptible to solvolysis which is the primary limitation to their general use for trace analysis. [Pg.441]

Hot split Column independent 50 ppm (FID) Ease of operation Independent of sample Rugged Qualitative analysis Flash vaporisation Thermal degradation Discrimination of higher boiling compounds possible Not suitable for trace analysis Poor, indirect quantification... [Pg.189]

For trace analysis in fluids, some Raman sensors (try to) make use of the SERS effect to increase their sensitivity. While the basic sensor layout for SERS sensors is similar to non-enhanced Raman sensors, somehow the metal particles have to be added. Other than in the laboratory, where the necessary metal particles can be added as colloidal solution to the sample, for sensor applications the particles must be suitably immobilised. In most cases, this is achieved by depositing the metal particles onto the surfaces of the excitation waveguide or the interface window and covering them with a suitable protection layer. The additional layer is required as otherwise washout effects or chemical reactions between e.g. sulphur-compounds and the particles reduce the enhancement effect. Alternatively, it is also possible to disperse the metal particles in the layer material before coating and apply them in one step with the coating. Suitable protection or matrix materials for SERS substrates could be e.g. sol-gel layers or polymer coatings. In either... [Pg.148]

In the shore laboratory, the samples must be handled with the care needed for any trace analysis. It must be remembered that the total amount of organic carbon in seawater is around 1 ppm single compounds are likely to be present at ppb levels. In order to collect enough material even for positive identification of some of the compounds present, the materials must often be concentrated. [Pg.48]

See the introductory comments in Sections I.A.l and I.A.2 of Chapter 7. This section is complementary to Section II.C above, dealing with trace analysis of tin, however, here attention is paid to the various organotin compounds present in the sample and not only to the overall tin content. It should be pointed out that innumerable examples appear in the literature, showing variations on procedural details required for a particular problem. The present account, although selective to a certain point, does not pretend to be critical on the subject. [Pg.373]

The SCE-GC combination began to be explored for trace analysis of organotin compounds and other pollutants. Its main advantage is that SCE accelerates the extraction-preconcentration operations involved in the analytical process95. [Pg.376]


See other pages where Compounds trace analysis is mentioned: [Pg.689]    [Pg.91]    [Pg.82]    [Pg.919]    [Pg.689]    [Pg.91]    [Pg.82]    [Pg.919]    [Pg.262]    [Pg.300]    [Pg.201]    [Pg.243]    [Pg.216]    [Pg.341]    [Pg.152]    [Pg.828]    [Pg.137]    [Pg.146]    [Pg.400]    [Pg.422]    [Pg.481]    [Pg.804]    [Pg.21]    [Pg.201]    [Pg.235]    [Pg.242]    [Pg.277]    [Pg.306]    [Pg.430]    [Pg.437]    [Pg.464]    [Pg.506]    [Pg.513]    [Pg.48]    [Pg.125]    [Pg.629]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Compound analysis

Compound specific stable carbon isotope analyses - a new tool for tracing the fate of organic riverine contaminants

Trace analysis

© 2024 chempedia.info