Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Common collector

Collect fractions starting from the bottom of the gradient, while recording an absorbance profile at 254 nm (which is dominated by the very abundant ribosomal RNA). We use a setup consisting of a peristaltic pump, ultraviolet (UV) detector, and fraction collector commonly used for chromatography experiments (GE Healthcare Life Sciences). [Pg.135]

FIGURE 4-33 A wet-dry atmospheric deposition collector commonly used for acid deposition monitoring. The roof over the wet bucket opens only when precipitation is sensed, thereby minimizing the collection of debris, bird droppings, etc. The dry bucket for collecting dry deposition is not a very close approximation to natural surfaces and yields results of uncertain meaning. [Pg.365]

There are two common occasions when rapid measurement is preferable. The first is with ionization sources using laser desorption or radionuclides. A pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few nanoseconds (ion traps excluded). If a point ion detector were to be used for this type of pulsed ionization, then after the beginning of the scan no more ions would reach the collector because there would not be any left The array collector overcomes this difficulty by detecting the ions produced all at the same instant. [Pg.209]

Eigure 11 shows a schematic and collector characteristics for a common emitter n—p—n transistor circuit. The load line crossing these characteristics shows the allowed operation of the transistor with a supply voltage, = 12 V a load resistor, 7 = 2 and a bias resistor, 7 g = 20 kQ. The load line corresponds to the equation = 7 7 -H. Plotting the load line on the collector characteristics defines BJT behavior 0.6 V is required... [Pg.351]

Cell geometry, such as tab/terminal positioning and battery configuration, strongly influence primary current distribution. The monopolar constmction is most common. Several electrodes of the same polarity may be connected in parallel to increase capacity. The current production concentrates near the tab connections unless special care is exercised in designing the current collector. Bipolar constmction, wherein the terminal or collector of one cell serves as the anode and cathode of the next cell in pile formation, leads to gready improved uniformity of current distribution. Several representations are available to calculate the current distribution across the geometric electrode surface (46—50). [Pg.514]

From the standpoint of collector design and performance, the most important size-related property of a dust particfe is its dynamic behavior. Particles larger than 100 [Lm are readily collectible by simple inertial or gravitational methods. For particles under 100 Im, the range of principal difficulty in dust collection, the resistance to motion in a gas is viscous (see Sec. 6, Thud and Particle Mechanics ), and for such particles, the most useful size specification is commonly the Stokes settling diameter, which is the diameter of the spherical particle of the same density that has the same terminal velocity in viscous flow as the particle in question. It is yet more convenient in many circumstances to use the aerodynamic diameter, which is the diameter of the particle of unit density (1 g/cm ) that has the same terminal settling velocity. Use of the aerodynamic diameter permits direct comparisons of the dynamic behavior of particles that are actually of different sizes, shapes, and densities [Raabe, J. Air Pollut. Control As.soc., 26, 856 (1976)]. [Pg.1580]

Sedimentation Tanks These tanks are an integral part of any activated-sludge system. It is essential to separate the suspended solids from the treated liquid if a high-quality effluent is to be produced. Circular sedimentation tanks with various types of hydraulic sludge collectors have become the standard secondary sedimentation system. Square tanks have been used with common-wall construc tion for compact design with multiple tanks. Most secondary sedimentation tanks use center-feed inlets and peripheral-weir outlets. Recently, efforts have been made to employ peripheral inlets with submerged-orifice flow controllers and either center-weir outlets or peripheral-weir outlets adjacent to the peripheral-inlet channel. [Pg.2221]

The most common inertial collector is the cyclone, which is used in two basic forms, the tangential inlet and the axial inlet. Figure 29-6 shows the two types. [Pg.469]

Other types of inertial collectors which might be used for particulate separation from a carrying gas stream depend on the same theoretical principles developed for cyclones. Table 29-2 summarizes the effect of the common variables on inertial collector performance. [Pg.470]

The second mechanism important in wet collectors is removal of the wetted particles on a collecting surface, followed by their eventual removal from the device. The collecting surface can be in the form of a bed or simply a wetted surface. One common combination follows the wetting section with an inertial collector which then separates the wetted particles from the carrying gas stream. [Pg.471]

There is one node within each switching power supply that has the highest ac voltage compared to the others. This node is the ac node found at the drain (or collector) of the power switch. In nonisolated dc/dc converters, this node is also connected to the inductor and catch (or output) rectifier. In transformer-isolated topologies, there are as many ac nodes as there are windings on the transformer. Electrically, they still represent a common node, only reflected through the transformer. Special attention must be paid to each ac node separately. [Pg.98]

Cartridge collectors perform very effectively in many different applications. Common applications of cartridge filter systems with pulse jet cleaning are comparable to baghouses described earlier. In addition to these applications, cartridge collectors can be used in any process where dust is generated and can be collected and ducted to a central location. [Pg.412]

The most common equipment for cleaning recirculated air from particles is fabric filters, mechanical collectors, electrostatic precipitators, and cleaners and wet collectors.For cleaning of recirculated air from gases, absorbers and adsorbers such as activated carbon, sometimes with impregnation for specific gases, and impregnated alumina are most common. The performance of different air cleaning equipment is described in many textbooks and handbooks. [Pg.613]

This type of bag-cleaning method is a fundamental characteristic of this type of collector. Terminology in the fabric filter field is not totally consistent or comprehensive. Table 13.2 presents acceptable definitions for common fabric filter terminology. [Pg.1233]

TABLE 13.2 Common Terminology for Fabric Filter Collectors... [Pg.1234]

Self-induced spray wet collectors This is the most common type, and relies on its separating action by the induced air from the fan pulling the contaminated air through a curtain of water. It is simple in operation with no pumps or moving parts except for the fan, which is set on the clean side of the collector. The scrubbing action is dependent on the pressure drop across the collector. When set, this is constant and is determined by the water level within the collector. The removal of sludge is either by automatic ejection or manual drag-out. [Pg.769]

The most common selective detectors in use generally respond to the presence of a characteristic element or group in the eluted compound. This is well illustrated by the thermionic ionisation detector (TID) which is essentially a flame ionisation detector giving a selective response to phosphorus- and/or nitrogen-containing compounds. Typically the TID contains an electrically heated rubidium silicate bead situated a few millimetres above the detector jet tip and below the collector electrode. The temperature of the bead is maintained... [Pg.243]

Although one of the most common storage batteries is called the nickel/cadmium system ( NiCad ), correctly written (-)Cd/KOH/NiO(OH)(+), cadmium is not usually applied as a metal to form a battery anode. The same can be said with regard to the silver/cadmium [(-) Cd / KOH / AgO (+)] and the MerCad battery [(-)Cd/KOH/HgO(+)]. The metallic negative in these cases may be formed starting with cadmium hydroxide, incorporated in the pore system of a sintered nickel plate or pressed upon a nickel-plated steel current collector (pocket plates), which is subsequently converted to cadmium metal by electrochemical reduction inside the cell (type AB2C2). This operation is done by the customers when they start the application of these (storage)... [Pg.196]

The previous section described active samplers where the air is swept of particles using mechanical mechanisms. This section describes passive samplers that do not move, but collect material that deposits by impaction or sedimentation deposition. These types of collector are the most common type for field studies aimed at assessing exposure of aquatic and terrestrial organisms to pesticides. [Pg.980]

Sediment deposition. Horizontal surfaces collect particles primarily by sedimentation deposition, sometimes referred to as fallout . These can provide valuable information relating to exposure for horizontal surfaces in the field such as water and ground. Most studies measuring spray performance within the application area, and/or outside this area by drift, include horizontal collectors. The most common types of such collector include flat papers, cards and plates. Water- and oil-sensitive papers have been widely used for looking at the uniformity of spray coverage, coefficient of variation, droplet densities and approximate droplet size within a spray block. [Pg.980]


See other pages where Common collector is mentioned: [Pg.27]    [Pg.270]    [Pg.27]    [Pg.270]    [Pg.478]    [Pg.195]    [Pg.34]    [Pg.411]    [Pg.17]    [Pg.520]    [Pg.564]    [Pg.256]    [Pg.433]    [Pg.1142]    [Pg.1434]    [Pg.1583]    [Pg.1600]    [Pg.1809]    [Pg.1809]    [Pg.2237]    [Pg.176]    [Pg.21]    [Pg.335]    [Pg.865]    [Pg.1232]    [Pg.1236]    [Pg.769]    [Pg.104]    [Pg.212]    [Pg.979]    [Pg.578]   
See also in sourсe #XX -- [ Pg.170 , Pg.180 ]




SEARCH



Amplification common collector

Collector

Transistor common-collector circuit

© 2024 chempedia.info