Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Array collector

The major advantage of array detectors over point ion detectors lies in their ability to measure both a range of m/z values and the corresponding ion abundances all at one time, rather than sequentially. For example, suppose it takes 10 msec to measure one m/z value and the associated number of ions (abundance). To measure 100 such ions of different m/z values with a point ion detector would require 1000 msec (1 sec). For the array detector, the time is stiU only 10 msec because all the ions of different m/z values arrive at the collector at the same time. Therefore, when it is important to be able to measure a range of ion m/z values in a short space of time, the array detector is advantageous. [Pg.216]

There are two common occasions when instantaneous measurement of a range of m/z values is preferable. First, with ionization sources such as those using laser desorption or radionuclides, a pulse of ions is produced in a very short interval of time, often of the order of a few nanoseconds. If the mass spectrometer takes 1 sec to attempt to scan the range of ions produced, then clearly there will be no ions left by the time the scan has completed more than a few microseconds (ion traps excluded). The array collector overcomes this difficulty by detecting the ions produced all at the same instant [Pg.216]

A second use of arrays arises in the detection of trace components of material introduced into a mass spectrometer. For such very small quantities, it may well be that, by the time a scan has been carried out by a mass spectrometer with a point ion collector, the tiny amount of substance may have disappeared before the scan has been completed. An array collector overcomes this problem. Often, the problem of detecting trace amounts of a substance using a point ion collector is overcome by measuring not the whole mass spectrum but only one characteristic m/z value (single ion monitoring or single ion detection). However, unlike array detection, this single-ion detection method does not provide the whole spectrum, and an identification based on only one m/z value may well be open to misinterpretation and error. [Pg.216]

Comparison of Multipoint Collectors (Detectors) of Ions Arrays and MicroChannel Plates 217 [Pg.217]

A multipoint ion collector (also called the detector) consists of a large number of miniature electron multiplier elements assembled, or constructed, side by side over a plane. A multipoint collector can be an array, which detects a dispersed beam of ions simultaneously over a range of m/z values and is frequently used with a sector-type mass spectrometer. Alternatively, a microchannel plate collector detects all ions of one m/z value. When combined with a TOP analyzer, the microchannel plate affords an almost instantaneous mass spectrum. Because of their construction and operation, microchannel plate detectors are cheaper to fit and maintain. Multipoint detectors are particularly useful for situations in which ionization occurs within a very short space of time, as with some ionization sources, or in which only trace quantities of any substance are available. For such fleeting availability of ions, only multipoint collectors can measure a whole spectrum or part of a spectrum satisfactorily in the short time available. [Pg.217]

Upon acceleration through an electric potential of V volts, ions of unknown m/z value reach a velocity v = [2zeV/m]° ). The ions continue at this velocity (drift) until they reach the detector. Since the start (/(,) and end (f) times are known, as is the length d of the drift region, the velocity can be calculated, and hence the m/z value can be calculated. In practice, an accurate measure of the distance d is not needed because it can be found by using ions of known m/z value to calibrate the system. Accurate measurement of the ion drift time is crucial. [Pg.220]


Ion detectors can be separated into two classes those that detect the arrival of all ions sequentially at one point (point ion collector) and those that detect the arrival of all ions simultaneously along a plane (array collector). This chapter discusses point collectors (detectors), while Chapter 29 focuses on array collectors (detectors). [Pg.201]

An ion beam containing just two types of ion of m/z values 100 and 101 dispersed in space on passing through a magnetic field. After dispersal, ions of individual m/z value 100 or lOI are focused at points close to the entries of two elements of an array collector. Each element of the array is a point ion collector. [Pg.208]

In modem mass spectrometry, ion collectors (detectors) are generally based on the electron multiplier and can be separated into two classes those that detect the arrival of all ions sequentially at a point (a single-point ion collector) and those that detect the arrival of all ions simultaneously (an array or multipoint collector). This chapter compares the uses of single- and multipoint ion collectors. For more detailed discussions of their construction and operation, see Chapter 28, Point Ion Collectors (Detectors), and Chapter 29, Array Collectors (Detectors). In some forms of mass spectrometry, other methods of ion detection can be used, as with ion cyclotron instmments, but these are not considered here. [Pg.211]

Recording of a dispersed ion beam can take place either at a point (see Chapter 28, Point Ion Collectors ) or across a plane, as in the array collector described here. [Pg.408]

An array collector is a collection of point collectors (elements) assembled in a plane. [Pg.408]

In a mass spectrometer, ions can arrive at a multipoint collector as a spatially dispersed beam. This means that all ions of different m/z values arrive simultaneously but separated in space according to each m/z value. Each element of the array, depending on its position in space, detects one particular m/z value (see Chapter 29, Array Collectors ). [Pg.410]

To differentiate tteir functions and modes of operation, the array collector of spatially dispersed m/z values is still called an array collector for historical reasons, but the other multipoint detector of a temporally dispersed range of m/z values is called a microchannel plate (typically used in time-of-flight instruments). [Pg.410]

Unlike the array collector, with a microchannel plate all ions of only one m/z value are detected simultaneously, and instrument resolution does not depend on the number of elements in the micro-channel array or on the separation of one element from another. For a microchannel plate, resolution of m/z values in an ion beam depends on their being separated in time by the analyzer so that their times of arrival at the plate differ. [Pg.410]

The specific electrochemical behaviour of IDAs is result of its design [97], i.e. two arrays intercalated and individually addressed in a bipotentiostatic system where reversible redox species can be cycled between one array (generator) and the other array (collector) (Fig. 32.3). The feedback obtained, greatly enhances the current and high sensitive detection can be achieved. An important application of IDAs is the electrochemical detection of p-aminophenol when it is generated from p-aminophenyl phosphate, by enzymatic reaction with alkaline phosphatase (like enzymatic label), in geno- [98-100] and immunoassays [101-103]. Another interesting feature of IDAs is the possibility of... [Pg.780]


See other pages where Array collector is mentioned: [Pg.205]    [Pg.205]    [Pg.207]    [Pg.207]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.216]    [Pg.219]    [Pg.408]    [Pg.205]    [Pg.205]    [Pg.207]    [Pg.207]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.216]    [Pg.219]    [Pg.408]   
See also in sourсe #XX -- [ Pg.201 , Pg.205 , Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.216 ]

See also in sourсe #XX -- [ Pg.201 , Pg.205 , Pg.206 , Pg.207 , Pg.208 , Pg.209 , Pg.216 ]




SEARCH



Array Collectors (Detectors)

Collector

Multipoint Collectors (Detectors) of Ions Arrays and MicroChannel Plates

Uses of Array Collectors

Uses of Array and MicroChannel Collectors

© 2024 chempedia.info