Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clay, organic syntheses reaction

Friedel-Crafts alkylations are among the most important reactions in organic synthesis. Solid acid catalysts have advantages in ease of product recovery, reduced waste streams, and reduction in corrosion and toxicity. In the past, people have used (pillared) clays (18), heteropolyacids (19) and zeohtes (20) for Friedel-Craft alkylations, with mixed success. Problems included poor catalyst stabihty and low activity. Benzylation of benzene using benzyl chloride is interesting for the preparation of substitutes of polychlorobenzene in the apphcation of dielectrics. The performance of Si-TUD-1 with different heteroatoms (Fe, Ga, Sn and Ti) was evaluated, and different levels of Fe inside Si-TUD-1 (denoted Fei, Fe2, Fes and Feio) were evaluated (21). The synthesis procedure of these materials was described in detail elsewhere (22). [Pg.372]

This work describes the application to soil of compounds of a previous study (11) which dealt primarily with organic synthesis and physical properties of reaction products of pure fatty acids with BETA. In this study derivatives were prepared from various industrial fatty materials. In addition, water infiltration studies on sand, sandy soil, and clay soils were carried out on the previously prepared and new compounds. Finally, an investigation was initiated to determine the biological effects of one water-repelling chemical, the partially hydrogenated tallow-fatty acid-DETA reaction product, on seed germination and plant growth. [Pg.214]

Dehydration of aldoximes to nitriles is an important transformation in organic synthesis. Most of the classical methods of dehydration required an excess of solvents and the catalyst remains as a waste (78S702, 80S659). However, zeohtes or clay are reported as reusable catalysts but they required harsh reaction conditions and longer reaction time (92S943). Recently, nitrile 201 was isolated in 60% yield when a mixture of the aldoxime 202 and tetrachloropyridine (TCP) adsorbed on alumina in a Pyrex test tube was subjected to MWI for 4.5 min (Scheme 42). TCP represented a... [Pg.29]

Alkvl Azides from Alkyl Bromides and Sodium Azide General procedure for the synthesis of alkyl azides. In a typical experiment, benzyl bromide (360 mg, 2.1 mmol) in petroleum ether (3 mL) and sodium azide (180 mg, 2.76 mmol) in water (3 mL) are admixed in a round-bottomed flask. To this stirred solution, pillared clay (100 mg) is added and the reaction mixture is refluxed with constant stirring at 90-100 C until all the starting material is consumed, as obsen/ed by thin layer chromatographv using pure hexane as solvent. The reaction is quenched with water and the product extracted into ether. The ether extracts are washed with water and the organic layer dried over sodium sulfate. The removal of solvent under reduced pressure affords the pure alkyl azides as confirmed by the spectral analysis. ... [Pg.156]

By far the preponderance of the 3400 kt of current worldwide phenolic resin production is in the form of phenol-formaldehyde (PF) reaction products. Phenol and formaldehyde are currently two of the most available monomers on earth. About 6000 kt of phenol and 10,000 kt of formaldehyde (100% basis) were produced in 1998 [55,56]. The organic raw materials for synthesis of phenol and formaldehyde are cumene (derived from benzene and propylene) and methanol, respectively. These materials are, in turn, obtained from petroleum and natural gas at relatively low cost ([57], pp. 10-26 [58], pp. 1-30). Cost is one of the most important advantages of phenolics in most applications. It is critical to the acceptance of phenolics for wood panel manufacture. With the exception of urea-formaldehyde resins, PF resins are the lowest cost thermosetting resins available. In addition to its synthesis from low cost monomers, phenolic resin costs are often further reduced by extension with fillers such as clays, chalk, rags, wood flours, nutshell flours, grain flours, starches, lignins, tannins, and various other low eost materials. Often these fillers and extenders improve the performance of the phenolic for a particular use while reducing cost. [Pg.872]

Solid-state synthesis of /J-nitrostyrenes has been reported by Varma et al. in a process that uses readily available styrene and its substituted derivatives and inexpensive clay-supported nitrate salts, clayfen and clayan (Scheme 6.50) [170], In a simple experiment, admixed styrene with clayfen or clayan is irradiated in a MW oven (-100-110 °C, 3 min) or heated in an oil bath (-100-110 °C, 15 min). For clayan intermittent heating is recommended with 30-s intervals to maintain the temperature below 60-70 °C. Remarkably, the reaction proceeds only in solid state and leads to the formation of polymeric products in organic solvent. [Pg.209]

Circulation flow system, measurement of reaction rate, 28 175-178 Clausius-Clapeyron equation, 38 171 Clay see also specific types color tests, 27 101 compensation behavior, 26 304-307 minerals, ship-in-bottle synthesis, metal clusters, 38 368-379 organic syntheses on, 38 264-279 active sites on montmorillonite for aldol reaction, 38 268-269 aldol condensation of enolsilanes with aldehydes and acetals, 38 265-273 Al-Mont acid strength, 38 270-271, 273 comparison of catalysis between Al-Mont and trifluorometfaanesulfonic acid, 38 269-270... [Pg.76]

The presence of solids such as clays, zeolites, silica or ion-exchange resins may allow catalysis or control of organic reactions. Often, yields are higher and work-up procedures simpler than for the corresponding homogeneous reactions, and product distributions may also be improved. Examples of selective substitution reactions in aromatic and heteroaromatic systems and of selective reactions of alkenes are discussed, and the wider potential for synthesis of fine chemicals is discussed. [Pg.55]

Concentration of the organic reactants on surfaces or in the pores of clay materials prior to reaction has been suggested by Bernal [219] and Cairns-Smith [220]. Pores of different sizes might have operated as prebiotic reactors for asymmetric synthesis, since within their confined environment one may find chiral catalytic sites as well as chiral surfaces. One could envisage that such pores might have provided a plausible environment for the formation of diastereoisomeric self-assemblies of the types described in this review and as required for the stochastic mirror symmetry breaking scenarios. In addition, within such pores the chiral material once formed would be protected from racemization that could have been induced by impact with heavy bodies or by intense cosmic radiation. [Pg.158]


See other pages where Clay, organic syntheses reaction is mentioned: [Pg.137]    [Pg.57]    [Pg.219]    [Pg.371]    [Pg.66]    [Pg.315]    [Pg.618]    [Pg.158]    [Pg.1]    [Pg.239]    [Pg.37]    [Pg.13]    [Pg.404]    [Pg.66]    [Pg.668]    [Pg.404]    [Pg.317]    [Pg.416]    [Pg.527]    [Pg.179]    [Pg.179]    [Pg.728]    [Pg.671]    [Pg.263]    [Pg.244]    [Pg.75]    [Pg.421]    [Pg.358]    [Pg.195]    [Pg.54]    [Pg.232]    [Pg.858]    [Pg.51]    [Pg.263]    [Pg.41]    [Pg.24]    [Pg.383]    [Pg.23]    [Pg.276]    [Pg.5918]    [Pg.45]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Organic clays

© 2024 chempedia.info