Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clays as supports

The first examples of cationic exchange of bis(oxazoline)-metal complexes used clays as supports [49,50]. Cu(II) complexes of ligands ent-6a, 6b, and 6c (Fig. 15) were supported on three different clays laponite (a synthetic clay), bentonite, and montmorillonite KIO. The influence of the copper salt from which the initial complexes were prepared, as well as that of the solvent used in the cationic exchange, was analyzed. [Pg.174]

The use of clays as supports for hydroprocessing has been reported and summarized [9-11], Dibenzothiophene (DBT) diluted with hexadecane (0.75 wt% S) was the liquid feed for HDS tests. The pore diameter of the MSC catalysts is seen to have a strong effect on both the HDS activity and selectivity (Figure 4). A commercial catalyst (Crosfield 465, Co/Mo alumina) was also measured under these conditions where it gave 77% DBT conversion and 61% BP selectivity. In a previous study [12], other synthetic hectorites were compared using these conditions except that a 1 wt% S feed was utilized. One sample was a control made without template that consisted of only micropores. The DBT conversion and BP selectivity were very low for this microporous material. The Crosfield material has significant macroporosity (42% of the pore volume) in addition to a broad distribution of mesoporosity, and has clearly been optimized to perform well under these HDS conditions. [Pg.423]

An asset of lamellar clays as supports for oxidants is their effective surface dimensionality. This leads to fast diffusional kinetics on the clay surfaces, which translate through the Smoluchowsky-Debye equation into high collision rates and, in turn, through the preexponential term, into high kinetic rates. - ... [Pg.846]

Because clays (rocks) usually contain more than one mineral and the various clay minerals differ in chemical and physical properties, the term clay may signify entirely different things to different clay users. Whereas the geologist views clay as a raw material for shale, the pedologist as a dynamic system to support plant life, and the ceramist as a body to be processed in preparation for vitrification, the chemist and technologist view clay as a catalyst, adsorbent, filler, coater, or source of aluminum or lithium compounds, etc. [Pg.193]

Finally, clays can be used as supports for other catalysts such as platinum metal or aluminum chloride, largely to facilitate recovery of the catalyst from a liquid after reaction (e.g., by filtration). [Pg.142]

A protocol for the rapid oxidation of alcohols to carbonyl compounds has been reported with montmorillonite K10 clay-supported iron(III) nitrate (clayfen). The simple solvent-free experimental procedure involved mixing of neat substrates with clayfen, followed by microwave irradiation for 15-60 s [44]. The use of clayfen mixed with iron(III) nitrate on clay as an oxidant afforded higher yields (Scheme 4) and was more efficient, since the... [Pg.208]

Cationic clays have also been used as supports for Cu. Cu-doped alumina-pillared montmorillonites have been employed in the oxidation of toluene and of xylenes with H2C>2. The pillaring and the Cu exchange are performed under acidic conditions at pH 2 and 3.5, respectively. It is unclear whether the Cu2+ remains fully associated with the clay in the presence of H2O2, which is itself acidic. Moreover, the reactions are unselective mixtures of ring-hydroxylated and side chain-oxidized products are obtained (180). [Pg.36]

In this chapter, an overview of the fundamentals of PNs is described, according to the author s understanding and experience as well as support from numerous references and review articles. The content of this chapter covers all kinds of inorganic nanoadditives, but, because the most widely investigated and thus understood nanoadditives used to enhance the thermal and fire resistance of the polymers are clays (natural or synthetic) followed by the CNTs and colloidal particles, the focus of the chapter is primarily on clays, particularly on the silicate clays and LDHs, as well as the CNTs. This includes structure, properties, and surface treatment of the nanoadditives, design of the modifiers, synthesis, characterization of the structure/morphology, and thermal and fire... [Pg.262]

Clay minerals are frequently applied as supports, simply impregnated with a solution containing real catalysts. [Pg.66]

Various kinds of oxide materials, including single oxides, mixed oxides, molybdates, heteropoly-ions, clays, and zeolites, are used in catalysis they can be amorphous or crystalline, acid or basic. Furthermore the oxides can be the actual catalysts or they can act as supports on which the active catalysts have been deposited. Silica and alumina are commonly used to support both metals and other metal oxide species. Amorphous silica/alumina is a solid acid catalyst, it is also used as a support for metals, when bifunctional (acid and metal) catalysis is required, e.g., in the cracking of hydrocarbons. Other acid catalysts are those obtained by the deposition of a soluble acid on an inert support, such as phosphoric acid on silica (SPA, used in the alkylation of benzene to cumene. Section 5.2.3). They show similar properties to those of the soluble parent acids, while allowing easier handling and fixed bed operation in commercial units. [Pg.272]

Supported metal oxide catalysts are a new class of catalytic materials that are excellent oxidation catalysts when redox surface sites are present. They are ideal catalysts for investigating catalytic molecular/electronic structure-activity selectivity relationships for oxidation reactions because (i) the number of catalytic active sites can be systematically controlled, which allows the determination of the number of participating catalytic active sites in the reaction, (ii) the TOP values for oxidation studies can be quantitatively determined since the number of exposed catalytic active sites can be easily determined, (iii) the oxide support can be varied to examine the effect of different types of ligand on the reaction kinetics, (iii) the molecular and electronic structures of the surface MOj, species can be spectroscopically determined under all environmental conditions for structure-activity determination and (iv) the redox surface sites can be combined with surface acid sites to examine the effect of surface Bronsted or Lewis acid sites. Such fundamental structure-activity information can provide insights and also guide the molecular engineering of advanced hydrocarbon oxidation metal oxide catalysts such as supported metal oxides, polyoxo metallates, metal oxide supported zeolites and molecular sieves, bulk mixed metal oxides and metal oxide supported clays. [Pg.496]

Montmorillonite supported zinc chloride, called Clayzic, has become an important solid acid catalyst. This material has both the Bronsted acidity associated with the clay as well as Lewis acidity from the zinc ions. Thermal activation at 275°C gave a catalyst that promoted the benzylation of cumene at 40°C in near quantitative yield. ... [Pg.207]

The use of pillared clays as metal supports has also been reported. The more defined interlamelar spacing available with these supports should give a more predictable shape selectivity to the resulting supported metal catalysts. Further, since the pillars prevent the collapse of the layers on drying and further heating, the pillared clay supported metals salts can be calcined and reduced under conditions that can give the best metal dispersion without any concern for a change in the structure of the support. ... [Pg.301]

So far, only very little attention has been focussed on the use of zeolites in biocatalysis, i.e., as supports for the immobilization of enzymes. Lie and Molin [116] studied the influence of hydrophobicity (dealuminated mordenite) and hydrophilicity (zeolite NaY) of the support on the adsorption of lipase from Candida cylindracea. The adsorption was achieved by precipitation of the enzyme with acetone. Hydrolysis of triacylglycerols and esterification of fatty acids with glycerol were the reactions studied. It was observed that the nature of the zeolite support has a significant influence on enzyme catalysis. Hydrolysis was blocked on the hydrophobic mordenite, but the esterification reaction was mediated. This reaction was, on the other hand, almost completely suppressed on the hydrophilic faujasite. The adsorption of enzymes on supports was also intensively examined with alkaline phosphatase on bentolite-L clay. The pH of the solution turned out to be very important both for the immobilization and for the activity of the enzyme [117]. Acid phosphatase from potato was immobilized onto zeolite NaX [118]. Also in this study, adsorption conditions were important in causing even multilayer formation of the enzyme on the zeolite. The influence of the cations in the zeolite support was scrutinized as well, and zeolite NaX turned out to be a better adsorbent than LiX orKX. [Pg.374]

Clays are minerals produced by the weathering action of water and heat on primary minerals. Their compositions can vary widely as a result of the replacement of one element with another. Invariably, they are microcrystalline or powdered in form and are usually hydrated. Often, they are used as supports for catalysts, as fillers in paint, and as ion-exchange vehicles. The clays that readily absorb water and swell are used as lubricants and bore-hole sealers in the drilling of oil wells. [Pg.899]

Dimerization - As reported in Part II, Chapter I the control of photochemical reactions in the constrained environment of a hydrotalcite clay as the supporting medium has been examined. This particular study examined the irradiation (X > 280 nm) of a mixture of 4-benzoylbenzoic acid and 2-phenylethe-nylbenzoic acid in this environment. While the regioselective formation of oxetanes was observed, dimerization of the phenylethenylbenzoic acid also takes... [Pg.154]

Figure 9.11 Log([K+]/[H" ]) versus log[H4Si04] diagram at 25°C with plotted chemical analyses of waters in contact with clays, as reported by Aagaard and Helgeson (1983). Phase boundaries are drawn consistent with the analyses and with the illite and montmorillonite compositions proposed in the text. Agreement of the data and boundaries suggest equilibrium between the phases and support the idea that illite and montmorillonite behave as two discrete phases.AfterR.M.Garrels in C/oystfe Clay Minerals, 32 161-66, Copyright 1984. Figure 9.11 Log([K+]/[H" ]) versus log[H4Si04] diagram at 25°C with plotted chemical analyses of waters in contact with clays, as reported by Aagaard and Helgeson (1983). Phase boundaries are drawn consistent with the analyses and with the illite and montmorillonite compositions proposed in the text. Agreement of the data and boundaries suggest equilibrium between the phases and support the idea that illite and montmorillonite behave as two discrete phases.AfterR.M.Garrels in C/oystfe Clay Minerals, 32 161-66, Copyright 1984.

See other pages where Clays as supports is mentioned: [Pg.10]    [Pg.262]    [Pg.10]    [Pg.262]    [Pg.59]    [Pg.130]    [Pg.65]    [Pg.75]    [Pg.102]    [Pg.219]    [Pg.421]    [Pg.422]    [Pg.517]    [Pg.256]    [Pg.249]    [Pg.349]    [Pg.127]    [Pg.433]    [Pg.87]    [Pg.256]    [Pg.50]    [Pg.65]    [Pg.840]    [Pg.840]    [Pg.82]    [Pg.3018]    [Pg.171]    [Pg.289]    [Pg.15]    [Pg.79]    [Pg.666]    [Pg.5]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Clay as a Polymerization Catalyst Support

PILC and Acid-Treated Clay as Supports

© 2024 chempedia.info