Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma chloride

Na + HCOs (sodium bicarbonate) Na + Cl (sodium chloride) Plasma salts... [Pg.724]

Nachbaur, J., M. R. Clarke, J-P. Provost, and J. L. Dancla. 1977. Variations of sodium, potassium and chloride plasma levels in the rat with age and sex. Laboratory Animal Science 27 972-975. [Pg.136]

The plasma system consisted of a standard vacuum pump and a tubular Pyrex reactor with a 13.56 MHz RF generator coupled to it using external copper electrodes [26]. During the experiments, surfaces of PVC powder and PE granules were modified in carbon tetrachloride and vinyl chloride plasma for the first polymer, and in acetylene plasma for the latter. The plasma treatment conditions are presented in Table 7. Plasma is known to yield mainly surface modifications with a minimum (if any) of plasma polymerization. The oligomer VCO was also used without application of plasma to prepare reference blends. [Pg.179]

Figure 19. Stress-strain curves of Carbon Tetra Chloride plasma treated LDPE / VCO added virgin PVC blends with 75% PE Strain rate 1.24... Figure 19. Stress-strain curves of Carbon Tetra Chloride plasma treated LDPE / VCO added virgin PVC blends with 75% PE Strain rate 1.24...
A major advantage of this hydride approach lies in the separation of the remaining elements of the analyte solution from the element to be determined. Because the volatile hydrides are swept out of the analyte solution, the latter can be simply diverted to waste and not sent through the plasma flame Itself. Consequently potential interference from. sample-preparation constituents and by-products is reduced to very low levels. For example, a major interference for arsenic analysis arises from ions ArCE having m/z 75,77, which have the same integral m/z value as that of As+ ions themselves. Thus, any chlorides in the analyte solution (for example, from sea water) could produce serious interference in the accurate analysis of arsenic. The option of diverting the used analyte solution away from the plasma flame facilitates accurate, sensitive analysis of isotope concentrations. Inlet systems for generation of volatile hydrides can operate continuously or batchwise. [Pg.99]

Oxygen and nitrogen also are deterrnined by conductivity or chromatographic techniques following a hot vacuum extraction or inert-gas fusion of hafnium with a noble metal (25,26). Nitrogen also may be deterrnined by the Kjeldahl technique (19). Phosphoms is determined by phosphine evolution and flame-emission detection. Chloride is determined indirecdy by atomic absorption or x-ray spectroscopy, or at higher levels by a selective-ion electrode. Fluoride can be determined similarly (27,28). Uranium and U-235 have been determined by inductively coupled plasma mass spectroscopy (29). [Pg.443]

In the chloride shift, Ck plays an important role in the transport of carbon dioxide (qv). In the plasma, CO2 is present as HCO, produced in the erythrocytes from CO2. The diffusion of HCO requires the counterdiffusion of another anion to maintain electrical neutraUty. This function is performed by Ck which readily diffuses into and out of the erythrocytes (see Fig. 5). The carbonic anhydrase-mediated Ck—HCO exchange is also important for cellular de novo fatty acid synthesis and myelination in the brain (62). [Pg.381]

Rubidium metal is commeicially available in essentially two grades, 99 + % and 99.9 + %. The main impurities ate other alkali metals. Rubidium compounds are available in a variety of grades from 99% to 99.99 + %. Manufacturers and suppliers of mbidium metal and mbidium compounds usually supply a complete certificate of analysis upon request. Analyses of metal impurities in mbidium compounds are determined by atomic absorption or inductive coupled plasma spectroscopy (icp). Other metallic impurities, such as sodium and potassium, are determined by atomic absorption or emission spectrograph. For analysis, mbidium metal is converted to a compound such as mbidium chloride. [Pg.280]

Various methods can be used to analy2e succinic acid and succinic anhydride, depending on the characteristics of the material. Methods generally used to control specifications of pure products include acidimetric titration for total acidity or purity comparison with Pt—Co standard calibrated solutions for color oxidation with potassium permanganate for unsaturated compounds subtracting from the total acidity the anhydride content measured by titration with morpholine for content of free acid in the anhydride atomic absorption or plasma spectroscopy for metals titration with AgNO or BaCl2 for chlorides and sulfates, respectively and comparison of the color of the sulfide solution of the metals with that of a solution with a known Pb content for heavy metals. [Pg.538]

Other methods iaclude hydrogen reduction of TiCl to TiCl and TiCl2 reduction above the melting poiat of titanium metal with sodium, which presents a container problem plasma reduction, ia which titanium is collected as a powder, and ionized and vaporized titanium combine with chlorine gas to reform TiCl2 on cool-down and aluminum reduction, which reduces TiCl to lower chlorides (19,20). [Pg.100]

The reactants ate fed into the tail flame of a d-c nitrogen plasma. The reaction occurs rapidly at temperatures around 1500°C and the HCl reacts with excess ammonia to form ammonium chloride. Similar reactions have been carried out using furnaces, lasers, and r-f plasmas (34) as the source of heat. Other routes using titanium tetrachloride starting material include... [Pg.119]

When the temperature of the plasma reaches about 5° to 8°C, the calculated quantity of calcium chloride solution is added in amount which is from 0.2 to 0.3% in excess of that needed to react with and precipitate the anticoagulant. The temperature of the plasma is allowed to rise to about 24°C. At 18° to 24°C strands of fibrin begin to appear and the... [Pg.641]

A surgical implant is constantly bathed in extracellular tissue fluid. Basically water, this fluid contains electrolytes, complex compounds, oxygen and carbon dioxide. Electrolytes present in the largest amounts are sodium (Na ) and chloride (Cl ) ions. Most of the fluids existing in the body (such as blood, plasma and lymph) have a chloride content (and pH) somewhat similar to that of sea water (about 5 to 20g/l and pH about 8) . [Pg.472]

There are nine different CLC isoforms in mammals. Based on homology, they can be classed into three branches. The first branch includes channels that reside predominantly in the plasma membrane. This includes C1C-1, a skeletal muscle chloride channel, C1C-2, a very broadly expressed channel, and CIC-Ka and CIC-Kb, which are expressed predominantly in the kidney but also in the ear. [Pg.371]

C1C-6 and C1C-7 define the third branch of the CLC family. These proteins are only about 45% identical to each other. Whereas CLC-7 is very broadly expressed, the CLC-6 protein seems to be restricted to the nervous system. It proved impossible to obtain plasma membrane chloride currents with either C1C-6 or C1C-7. This is due to the fact that both channels reside in intracellular organelles under most circumstances. Based on structural features, it appeals likely that they also mediate CF/H + exchange. [Pg.372]

C1C-6 is a late endosomal chloride transporter. Its disruption in mice led to lysosomal storage disease. C1C-7 is expressed in late endosomes and lysosomes. It needs Ostml as (3-subunit [3]. The disruption of either C1C-7 or Ostml in mice and man leads to severe osteopetrosis, retinal degeneration, and a severe lysosomal storage disease. ClC-7/Ostml is highly expressed in osteoclasts. In these cells, it is inserted together with the proton pump into the specialized plasma membrane ( ruffled border ) that faces the reabsorption lacuna. Osteoclasts are still present in C1C-7 knockout... [Pg.372]

Energy substrates include dextrose solutions and fat emulsion. Solutions used to supply energy and fluid include dextrose (glucose) in water or sodium chloride, alcohol in dextrose, and IV fat emulsion. Dextrose is a carbohydrate used to provide a source of calories and fluid. Alcohol (as alcohol in dextrose) also provides calories. Dextrose is available in various strengths (or percent of the carbohydrate) in a fluid, which may be water or sodium chloride (saline). Dextrose and dextrose in alcohol are available in various strengths (or percent of the carbohydrate and percent of the alcohol) in water. Dextrose solutions also are available with electrolytes, for example, Plasma-Lyte 56 and 5% Dextrose. Calories provided by dextrose and dextrose and alcohol solutions are listed in Table 58-1. [Pg.634]

The most important type of mixed solution is a buffer, a solution in which the pH resists change when small amounts of strong acids or bases are added. Buffers are used to calibrate pH meters, to culture bacteria, and to control the pH of solutions in which chemical reactions are taking place. They are also administered intravenously to hospital patients. Human blood plasma is buffered to pH = 7.4 the ocean is buffered to about pH = 8.4 by a complex buffering process that depends on the presence of hydrogen carbonates and silicates. A buffer consists of an aqueous solution of a weak acid and its conjugate base supplied as a salt, or a weak base and its conjugate acid supplied as a salt. Examples are a solution of acetic acid and sodium acetate and a solution of ammonia and ammonium chloride. [Pg.566]

In addition to the thermal CVD reactions described above, a glow discharge plasma at 480-650°C has been used to deposit HB2 from the mixed chlorides,... [Pg.326]

Tantalum disilicide, TaSi2, is very refractory and chemically resistant. It is deposited from the reaction of the chloride, TaCl5, with silane (SiH4), or dichlorosilane (SiH2Cl2), the latter precursor being preferred. The reaction takes place in a plasma as follows ... [Pg.330]

The reactions of mercuric iodide, mercuric bromide, and mercuric chloride with the excited species produced in the hexafluoroethane plasma were examined first, as the expected products were known to be stable and had been well characterized 13). Thus, these reactions constituted a "calibration of the system. Bis(trifluoromethyl)mercury was obtained from the reaction of all of the mercuric halides, but the highest yield (95%, based on the amount of metal halide consumed) was obtained with mercuric iodide. The mole ratios of bis(trifluoro-methyDmercury to (trifluoromethyl)mercuric halides formed by the respective halides is presented in Table I, along with the weight in grams of the trifluoromethyl mercurials recovered from a typical, five-hour run. [Pg.183]

An efficient biocatalytic method for the production of amides in multigrara scale has been developed for the synthesis of a pyrrole-amide, which is an intermediate for the synthesis of the dipeptidyl peptidase IV that regulates plasma levels of the insulinotropic proglucagon. CALB catalyzes the ammonolysis of the ester with ammonium carbamate as source of ammonia (Scheme 7.8) [22]. The use of ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol by-products. [Pg.176]

Inductively coupled plasma mass spectrometry was applied to the analysis of six organotin compounds (chlorides of dimethyl-, dibutyl-, trimethyl-, tributyl-, diphenyl-, and triphenyltin). Detection hmits for the six organotins ranged from 24 to 51 pg as tin the dynamic range was over lO, from 1 pg/1 to 10 mg/1 (Inoue Kawabata, 1993). [Pg.7]


See other pages where Plasma chloride is mentioned: [Pg.1772]    [Pg.1772]    [Pg.114]    [Pg.449]    [Pg.559]    [Pg.185]    [Pg.522]    [Pg.429]    [Pg.62]    [Pg.160]    [Pg.224]    [Pg.203]    [Pg.207]    [Pg.213]    [Pg.994]    [Pg.1118]    [Pg.760]    [Pg.641]    [Pg.309]    [Pg.6]    [Pg.323]    [Pg.371]    [Pg.371]    [Pg.566]    [Pg.170]    [Pg.89]    [Pg.244]   
See also in sourсe #XX -- [ Pg.471 ]




SEARCH



Chloride plasma concentration

© 2024 chempedia.info