Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions aqueous

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

The second application of the CFTI protocol is the evaluation of the free energy differences between four states of the linear form of the opioid peptide DPDPE in solution. Our primary result is the determination of the free energy differences between the representative stable structures j3c and Pe and the cyclic-like conformer Cyc of linear DPDPE in aqueous solution. These free energy differences, 4.0 kcal/mol between pc and Cyc, and 6.3 kcal/mol between pE and Cyc, reflect the cost of pre-organizing the linear peptide into a conformation conducive for disulfide bond formation. Such a conformational change is a pre-requisite for the chemical reaction of S-S bond formation to proceed. The predicted low population of the cyclic-like structure, which is presumably the biologically active conformer, agrees qualitatively with observed lower potency and different receptor specificity of the linear form relative to the cyclic peptide. [Pg.173]

Because six membered rings are normally less strained than five membered ones pyranose forms are usually present m greater amounts than furanose forms at equilib rium and the concentration of the open chain form is quite small The distribution of carbohydrates among their various hemiacetal forms has been examined by using H and NMR spectroscopy In aqueous solution for example d ribose is found to contain the various a and p furanose and pyranose forms m the amounts shown m Figure 25 5 The concentration of the open chain form at equilibrium is too small to measure directly Nevertheless it occupies a central position m that mterconversions of a and p anomers and furanose and pyranose forms take place by way of the open chain form as an inter mediate As will be seen later certain chemical reactions also proceed by way of the open chain form... [Pg.1039]

A study of the kinetics of a chemical reaction begins with the measurement of its reaction rate. Consider, for example, the general reaction shown in the following equation, involving the aqueous solutes A, B, C, and D, with stoichiometries of a, b, c, and d. [Pg.750]

For both aqueous and nonaqueous liquids, MBSL is caused by chemical reactions of high energy species formed duriag cavitation by bubble coUapse, and its principal source is most probably not blackbody radiation or electrical discharge. MBSL is predominandy a form of chemiluminescence. [Pg.260]

Chlorine and caustic soda are coproducts of electrolysis of aqueous solutions of sodium chloride [7647-14-5] NaCl, (commonly called brine) following the overall chemical reaction... [Pg.481]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

Sohd silver is more permeable by oxygen than any other metal. Oxygen moves freely within the metallic silver lattice, not leaving the surface until two oxygen atoms connect to form Og. This occurs at - 300° C. Below this temperature silver is an efficient catalyst for gaseous oxidative chemical reactions. Silver is also an extremely efficient catalyst for aqueous oxidative sanitation. [Pg.82]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

With a reactive solvent, the mass-transfer coefficient may be enhanced by a factor E so that, for instance. Kg is replaced by EKg. Like specific rates of ordinary chemical reactions, such enhancements must be found experimentally. There are no generalized correlations. Some calculations have been made for idealized situations, such as complete reaction in the liquid film. Tables 23-6 and 23-7 show a few spot data. On that basis, a tower for absorption of SO9 with NaOH is smaller than that with pure water by a factor of roughly 0.317/7.0 = 0.045. Table 23-8 lists the main factors that are needed for mathematical representation of KgO in a typical case of the absorption of CO9 by aqueous mouethauolamiue. Figure 23-27 shows some of the complex behaviors of equilibria and mass-transfer coefficients for the absorption of CO9 in solutions of potassium carbonate. Other than Henry s law, p = HC, which holds for some fairly dilute solutions, there is no general form of equilibrium relation. A typically complex equation is that for CO9 in contact with sodium carbonate solutions (Harte, Baker, and Purcell, Ind. Eng. Chem., 25, 528 [1933]), which is... [Pg.2106]

Particular reactions can occur in either or both phases or near the interface. Nitration of aromatics with HNO3-H2SO4 occurs in the aqueous phase (Albright and Hanson, eds.. Industrial and Laboratoiy Nitration.s, ACS Symposium Series 22 [1975]). An industrial example of reaction in both phases is the oximation of cyclohexanone, a step in the manufacture of caprolactam for nylon (Rod, Proc. 4th Interna-tional/6th European Symposium on Chemical Reactions, Heidelberg, Pergamon, 1976, p. 275). The reaction between butene and isobutane... [Pg.2116]

Uniform corrosion is the deterioration of a metal surface that occurs uniformly across the material. It occurs primarily when the surface is in contact with an aqueous environment, which results in a chemical reaction between the metal and the service environment. Since this form of corrosion results in a relatively uniform degradation of apparatus material, it can be accounted for most readily at the time the equipment is designed, either by proper material selection, special coatings or linings, or increased wall thicknesses. [Pg.13]

Carbon dioxide gas diluted with nitrogen is passed continuously across the surface of an agitated aqueous lime solution. Clouds of crystals first appear just beneath the gas-liquid interface, although soon disperse into the bulk liquid phase. This indicates that crystallization occurs predominantly at the gas-liquid interface due to the localized high supersaturation produced by the mass transfer limited chemical reaction. The transient mean size of crystals obtained as a function of agitation rate is shown in Figure 8.16. [Pg.239]

Phase-transfer catalysis (Section 22.5) Method for increasing the rate of a chemical reaction by transporting an ionic reactant from an aqueous phase where it is solvated and less reactive to an organic phase where it is not solvated and is more reactive. Typically, the reactant is an anion that is carried to the organic phase as its quaternary ammonium salt. [Pg.1290]

These equilibria effect a rapid exchange of N atoms between the various species and only a single N nmr signal is seen at the weighted average position of HNO3, [NOa]" " and [N03]. They also account for the high electrical conductivity of the pure (stoichiometric) liquid (Table 11.13), and are an important factor in the chemical reactions of nitric acid and its non-aqueous solutions see below. [Pg.467]

Electronic structure methods are aimed at solving the Schrodinger equation for a single or a few molecules, infinitely removed from all other molecules. Physically this corresponds to the situation occurring in the gas phase under low pressure (vacuum). Experimentally, however, the majority of chemical reactions are carried out in solution. Biologically relevant processes also occur in solution, aqueous systems with rather specific pH and ionic conditions. Most reactions are both qualitatively and quantitatively different under gas and solution phase conditions, especially those involving ions or polar species. Molecular properties are also sensitive to the environment. [Pg.372]

It is important to make the distinction between the multiphasic catalysis concept and transfer-assisted organometallic reactions or phase-transfer catalysis (PTC). In this latter approach, a catalytic amount of quaternary ammonium salt [Q] [X] is present in an aqueous phase. The catalyst s lipophilic cation [Q] transports the reactant s anion [Y] to the organic phase, as an ion-pair, and the chemical reaction occurs in the organic phase of the two-phase organic/aqueous mixture [2]. [Pg.258]

The oxidation methods described previously are heterogeneous in nature since they involve chemical reactions between substances located partly in an organic phase and partly in an aqueous phase. Such reactions are usually slow, suffer from mixing problems, and often result in inhomogeneous reaction mixtures. On the other hand, using polar, aprotic solvents to achieve homogeneous solutions increases both cost and procedural difficulties. Recently, a technique that is commonly referred to as phase-transfer catalysis has come into prominence. This technique provides a powerful alternative to the usual methods for conducting these kinds of reactions. [Pg.520]

In oilfield situations we are generally faced with corrosion attacks in aqueous environments. Basically all attacks in aqueous solutions are electrochemical in nature. This means that besides the chemical reaction there will also be a flow of electrons, resulting in a flow of current. The current flows from a higher potential to a lower one. Hence, there are two reactions taking place simultaneously in the system. One reaction occurs as the electrons are discharged from the surface, called the anode. The released electrons are consumed in the other... [Pg.1259]

We conclude that corrosion is a chemical reaction (equation 10.1) occurring by an electrochemical mechanism (equations 10.2) and (10.3), i.e. by a process involving electrical and chemical species. Figure 10.1 is a schematic representation of aqueous corrrosion occurring at a metal surface. [Pg.110]

When 1, 3, 3-triethoxypropene was hydrolyzed with IN sulfuric acid, a solution of malonaldehyde whose optical density was perfectly stable at 350 m/x for at least one week was obtained. If the solution was made alkaline, the optical density at the same wavelength increased by a small value and then remained virtually constant for at least one week (56). It was also observed that in these solutions the extinction coefficient at 350 m/x was very low (observed 8.3, 61.5 and 69, for solutions of pH 0.4, 7.15 and 9.4 respectively) compared with previously reported values which varied from 200 ( 40) to 1000 ( 48). On the other hand, the absorption of solutions having a pH of 3 to 5, increased considerably with time (at pH 4.75, the extinction coefficient of malonaldehyde at 350 m/x was initially about 40 after four weeks a value of about 930 was recorded and the optical density of the solution was still increasing). This increase in absorption was accompanied by a marked decrease in the malonaldehyde content of the solution, as measured by the thiobarbituric acid method. As a corollary, it was found that aqueous solutions of malonaldehyde, prepared by autocatalyzed hydrolysis (33) of the same acetal and which had a pH of about 3.5, showed, at the completion of the hydrolysis, considerably higher extinction coefficient values at 350 m/x than did those malonaldehyde solutions which were prepared by hydrolysis with IN acid and subsequently adjusted to pH 4. It appears, therefore, that at pH values at which most of the periodate oxidations are carried out, malonaldehyde is unstable and undergoes a chemical reaction, the nature of which is not, as yet, known. [Pg.112]


See other pages where Chemical reactions aqueous is mentioned: [Pg.256]    [Pg.257]    [Pg.256]    [Pg.257]    [Pg.500]    [Pg.163]    [Pg.1093]    [Pg.168]    [Pg.1290]    [Pg.438]    [Pg.501]    [Pg.2]    [Pg.443]    [Pg.163]    [Pg.542]    [Pg.314]    [Pg.397]    [Pg.324]    [Pg.205]    [Pg.1448]    [Pg.27]    [Pg.319]    [Pg.148]    [Pg.944]    [Pg.54]    [Pg.359]    [Pg.374]    [Pg.992]    [Pg.1265]    [Pg.181]    [Pg.1301]   


SEARCH



Aqueous Fast Chemical Reactions

Aqueous Reactions and Chemical Analysis

Aqueous reactions

Aqueous solutions chemical reactions

Chemical Quantities and Aqueous Reactions

Chemical equations aqueous ionic reactions

Chemical reaction in aqueous solutions

Chemical reactions aqueous ionic

Dynamic Behavior of Solutions with Aqueous-Phase Chemical Reactions

Reaction Gibbs energy, aqueous systems, chemical equilibrium

© 2024 chempedia.info