Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characteristics detection limits

The choice of an analytical method depends on its performance characteristics (detection limits, accuracy and precision, speed etc). Other conditions to be reached are the concerned element, the concentration in the sample of interest, the variability of their concentration. The concentration of metal ions in studied Seaside Lakes were determined by flame atomic absorption spectrometry (FAAS) (Chirila et al., 2003a), inductively coupled plasma atomic emission spectrometry (ICP-AES) (Chirila et al., 2002), molecular absorption spectrometry in visible (Chirila and Carazeanu, 2001). These investigations were carried out in the biotope (sediment and water) and biocenosis (different plants and fish) from one ecosystem (Tabacarie Lake) and in water samples from the other Seaside lakes. [Pg.209]

X-ray spectroscopy Analytical method by which a sample is irradiated with X-rays, characteristic radiation being emitted after scattering from the specimen. The detection limits for various elements are of the ordering cm. ... [Pg.429]

The variety of AES techniques requires careful evaluation for selecting the proper approach to an analytical problem. Table 4 only suggests the various characteristics. More detailed treatment of detection limits must include consideration of spectral interferences (191). AES is the primary technique for metals analysis in ferrous and other alloys geological, environmental, and biological samples water analysis and process streams (192). [Pg.318]

The evaluation of metrological characteristics of the technique, perfonued with minerals of different composition, showed that technique developed for reliability and precision satisfies the requirements offered for quantitative determinations, category II. The detection limits are acceptable for solving the problems posed and amount to 0.1 - 0.4 wt. %, depending on the element analyzed. [Pg.152]

The complex of the following destmctive and nondestmctive analytical methods was used for studying the composition of sponges inductively coupled plasma mass-spectrometry (ICP-MS), X-ray fluorescence (XRF), electron probe microanalysis (EPMA), and atomic absorption spectrometry (AAS). Techniques of sample preparation were developed for each method and their metrological characteristics were defined. Relative standard deviations for all the elements did not exceed 0.25 within detection limit. The accuracy of techniques elaborated was checked with the method of additions and control methods of analysis. [Pg.223]

The region of unreliable reaction at use of created test-tools for visual detection of nitroxoline has been studied. The distribution of frequencies of the detection in region of unreliable reaction for system with Cu [Fe(CN)g] the best fit to the function of normal distribution, for other systems - function Weibulle. A detection limit (c J and other characteristics of test-systems are reduced in the table ... [Pg.325]

There have been also found the quantitative characteristics of the methods. They are as follows for HPLC method the linearity is 0.1 ng to 2 ng the detecting limit is 0.1 ng the limit of the quantitative estimation makes up 0.0004 mg/kg a coefficient of variation is 2.74% for the chromatodensitometry method the linearity is 2 ng to 10 ng the detecting limit is 0.6 ng the coefficient of variation is 2.37%. The data obtained have been treated using a regressive analysis. [Pg.368]

The detection of impurities or surface layers (e.g., oxides) on thick specimens is a special situation. Although the X-ray production and absorption assumptions used for thin specimens apply, the X-ray spectra are complicated by the background and characteristic X rays generated in the thick specimen. Consequently, the absolute detection limits are not as good as those given above for thin specimens. However, the detection limits compare very favorably with other surface analysis techniques, and the results can be quantified easily. To date there has not been any systematic study of the detection limits for elements on surfaces however, representative studies have shown that detectable surface concentrations for carbon and... [Pg.361]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

Approximately 70 different elements are routinely determined using ICP-OES. Detection limits are typically in the sub-part-per-billion (sub-ppb) to 0.1 part-per-million (ppm) range. ICP-OES is most commonly used for bulk analysis of liquid samples or solids dissolved in liquids. Special sample introduction techniques, such as spark discharge or laser ablation, allow the analysis of surfaces or thin films. Each element emits a characteristic spectrum in the ultraviolet and visible region. The light intensity at one of the characteristic wavelengths is proportional to the concentration of that element in the sample. [Pg.633]

A number of biochemical markers not associated with the cell envelope allow the specific detection of individual microorganisms in environmental samples. These include secondary alcohols. For example, Mycobacterium xenopi can be detected through the hydrolysis of wax ester mycolates, which liberates 2-docosanol, a characteristic and dominant secondary alcohol, which can be detected at low levels by GC-MS. This biomarker was found to be very useful for the rapid detection of M. xenopi in drinking water (159,160). Results from the GC-MS detection of 2-docosanol were obtained within 2 days compared to the 12 weeks required for culturable detection of M. xenopi. The detection limit for this type of approach was found to be 10 colony-forming units (CFU) ml" drinking water. [Pg.390]

Table 5.5 shows the main characteristics of UV spectrophotometry as applied to polymer/additive analysis. Growing interest in automatic sample processing looks upon spectrophotometry as a convenient detection technique due to the relatively low cost of the equipment and easy and cheap maintenance. The main advantage of UV/VIS spectroscopy is its extreme sensitivity, which permits typical absorption detection limits in solution of 10-5 M (conventional transmission) to 10 7 M (photoacoustic). The use of low concentrations of substrates gives relatively ideal solutions [20]. As UV/VIS spectra of analytes in solution show little fine structure, the technique is of relatively low diagnostic value on the other hand, it is one of the most widely used for quantitative analysis. Absorption of UV/VIS light is quantitatively highly accurate. The simple linear relationship between... [Pg.306]

Principles and Characteristics Although early published methods using SPE for sample preparation avoided use of GC because of the reported lack of cleanliness of the extraction device, SPE-GC is now a mature technique. Off-line SPE-GC is well documented [62,63] but less attractive, mainly in terms of analyte detectability (only an aliquot of the extract is injected into the chromatograph), precision, miniaturisation and automation, and solvent consumption. The interface of SPE with GC consists of a transfer capillary introduced into a retention gap via an on-column injector. Automated SPE may be interfaced to GC-MS using a PTV injector for large-volume injection [64]. LVI actually is the basic and critical step in any SPE-to-GC transfer of analytes. Suitable solvents for LVI-GC include pentane, hexane, methyl- and ethylacetate, and diethyl or methyl-f-butyl ether. Large-volume PTV permits injection of some 100 iL of sample extract, a 100-fold increase compared to conventional GC injection. Consequently, detection limits can be improved by a factor of 100, without... [Pg.436]

Principles and Characteristics As mentioned already (Section 3.5.2) solid-phase microextraction involves the use of a micro-fibre which is exposed to the analyte(s) for a prespecified time. GC-MS is an ideal detector after SPME extraction/injection for both qualitative and quantitative analysis. For SPME-GC analysis, the fibre is forced into the chromatography capillary injector, where the entire extraction is desorbed. A high linear flow-rate of the carrier gas along the fibre is essential to ensure complete desorption of the analytes. Because no solvent is injected, and the analytes are rapidly desorbed on to the column, minimum detection limits are improved and resolution is maintained. Online coupling of conventional fibre-based SPME coupled with GC is now becoming routine. Automated SPME takes the sample directly from bottle to gas chromatograph. Split/splitless, on-column and PTV injection are compatible with SPME. SPME can also be used very effectively for sample introduction to fast GC systems, provided that a dedicated injector is used for this purpose [69,70],... [Pg.437]

Table 7.33 reports the main characteristics of GC-ICP-MS. Since both GC and ICP-MS can operate independently and can be coupled within a few minutes by means of a transfer line, hyphenation of these instruments is even more attractive than GC-MIP-AES. GC-ICP-MS is gaining popularity, probably due to the fact that speciation information is now often required when analysing samples. Advantages of GC-ICP-MS over HPLC-ICP-MS are its superior resolution, resulting in sharper peak shapes and thus lower detection limits. GC-ICP-MS produces a dry plasma when the separated species reach the ICP they are not accompanied by solvent or liquid eluents. This reduces spectral interferences. Variations on the GC-ICP-MS... [Pg.474]

Microbore HPLC-FTIR detection limits are about 10 times lower than analytical-scale HPLC-FTIR detection limits. The lowest reported LC-FTIR detection limits are approximately 100-1000 times higher than the best GC-FTIR detection limits. The main characteristics of flow-cell HPLC-FTIR are summarised in Table 7.44. Because of mobile-phase interferences, flow-cell HPLC-FTIR is considered as a powerful tool only for the specific detection of major components but is otherwise a method of limited potential, and SFE-SFC-FTTR has been proposed as an alternative [391]. [Pg.491]


See other pages where Characteristics detection limits is mentioned: [Pg.150]    [Pg.106]    [Pg.150]    [Pg.106]    [Pg.1625]    [Pg.699]    [Pg.443]    [Pg.316]    [Pg.317]    [Pg.276]    [Pg.90]    [Pg.28]    [Pg.136]    [Pg.166]    [Pg.182]    [Pg.357]    [Pg.360]    [Pg.361]    [Pg.362]    [Pg.531]    [Pg.606]    [Pg.181]    [Pg.338]    [Pg.88]    [Pg.25]    [Pg.214]    [Pg.266]    [Pg.339]    [Pg.610]    [Pg.216]    [Pg.497]    [Pg.954]    [Pg.47]    [Pg.30]    [Pg.437]    [Pg.459]    [Pg.507]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

Response characteristics selectivity and detection limits

© 2024 chempedia.info