Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ceramics substitutes

Perovskite-type compounds, especially BaTiO, have the abiUty to form extensive soHd solutions. By this means a wide variety of materials having continuously changing electrical properties can be produced ia the polycrystaUine ceramic state. By substituting ions for ions, T can be... [Pg.204]

Fig. 4. Effect of isovalent substitutions on crystal stmcture transition temperatures of ceramic BaTiO where ( ) represents Pb (—), Ca and ( ) substitution for Ba and (—) and ( ) substitution for. Transition temperatures for pure BaTiO are 135, 15, and... Fig. 4. Effect of isovalent substitutions on crystal stmcture transition temperatures of ceramic BaTiO where ( ) represents Pb (—), Ca and ( ) substitution for Ba and (—) and ( ) substitution for. Transition temperatures for pure BaTiO are 135, 15, and...
J. A. Coppola and C. H. McMurtry, "Substitution of Ceramics for Ductile Materials ia Design," National Symposium on Ceramics in the Service of Man, Carnegie Institution, Washington, D.C., 1976. [Pg.470]

Another desirable property for a ceramic color is a high refractive index. For example, valuable pigments are based on spinels [1302-67-6] ( 2jj = 1.8) and on zircon ( 2j = 1.9), but no valuable pigments are based on apatite ( 2j = 1.6), even though the lattice of apatite is as versatile for making ionic substitutions as that of spinel. [Pg.426]

In lead zh conate, PbZrOs, the larger lead ions are displaced alternately from the cube corner sites to produce an antifeiToelectric. This can readily be converted to a feiToelectric by dre substitution of Ti" + ions for some of the Zr + ions, the maximum value of permittivity occumirg at about the 50 50 mixture of PbZrOs and PbTiOs. The resulting PZT ceramics are used in a number of capacitance and electro-optic applicahons. The major problem in dre preparation of these solid soluhons is the volatility of PbO. This is overcome by... [Pg.236]

A number of water-soluble cellulose ethers are marketed." Methyl cellulose is prepared by a method similar to that used for ethyl cellulose. A degree of substitution of 1.6-1.8 is usual since the resultant ether is soluble in cold water but not in hot. It is used as a thickening agent and emulsifier in cosmetics, as a paper size, in pharmaceuticals, in ceramics and in leather tanning operations. [Pg.632]

There has been a rapid growth of the demand for plastics from less than 20 billion pounds in 1970 to nearly 50 billion pounds consumed in the United States in 1986, mostly due to the substitution of traditional raw materials. All over the world, plastics have replaced metals, glass, ceramics, wood papers, and natural fibers in a wide variety of industries including packaging, consumer products, automobiles, building and construction, electronics and electrical equipment, appliances, furniture, piping, and heavy industrial equipment [57-121]. Consumption patterns of PBAs in some countries are shown in Tabies 1 and 2. [Pg.650]

The poor efficiencies of coal-fired power plants in 1896 (2.6 percent on average compared with over forty percent one hundred years later) prompted W. W. Jacques to invent the high temperature (500°C to 600°C [900°F to 1100°F]) fuel cell, and then build a lOO-cell battery to produce electricity from coal combustion. The battery operated intermittently for six months, but with diminishing performance, the carbon dioxide generated and present in the air reacted with and consumed its molten potassium hydroxide electrolyte. In 1910, E. Bauer substituted molten salts (e.g., carbonates, silicates, and borates) and used molten silver as the oxygen electrode. Numerous molten salt batteiy systems have since evolved to handle peak loads in electric power plants, and for electric vehicle propulsion. Of particular note is the sodium and nickel chloride couple in a molten chloroalumi-nate salt electrolyte for electric vehicle propulsion. One special feature is the use of a semi-permeable aluminum oxide ceramic separator to prevent lithium ions from diffusing to the sodium electrode, but still allow the opposing flow of sodium ions. [Pg.235]

The key to the superconducting properties of these ceramics seems to be the presence of planes of copper and oxygen atoms bonded to one another. The significance of the other atoms in the lattice seems to be to provide a stmctural framework for the copper and oxygen atoms. Thus, in the superconducting compound YBa2Cu30, the substitution of other rare earths for yttrium resrrlts in little change in the properties of the material. [Pg.62]

The number of such examples, however, is not high. In many other examples of advanced-performance materials, such as DuPont s Kevlar and Allied Signal s SPECTRA, the volume applications associated with system-for-system substitution has not yet occurred at a level necessary to pay back the development and commercialization costs already expended. High-performance ceramics is another area in which the early promise has yet to materialize. The consequences of Eckstut s life-cycle dynamics have been overcapacity and severe rationalization in high-performance carbon fiber businesses, some specialty alloy activities, and high-performance polymer composites. Thus, with critical technologies that involve advanced-performance materials, we need to better understand how to exploit their value in a commercially viable way. [Pg.43]

West (p. 6), Miller (p. 43), Zeigler (10), and Sawan (p. 112) outline the synthesis of a wide variety of soluble, processable polydiorganosilanes, a class of polymers which not long ago was thought to be intractable. Matyjaszewski (p. 78) has found significant improvements in the synthetic method for polydiorganosilane synthesis as well as new synthetic routes to unusual substituted polydiorganosilanes. Seyferth (p. 21, 143) reports synthetic routes to a number of new polycarbosilanes and polysilazanes which may be used as precursors to ceramic materials. [Pg.3]

There is a great deal of potential interest in borazine as a precursor of boron nitride, since it offers the advantages of being a single source of boron and nitrogen with the correct B/N ratio and a high ceramic yield. In addition, borazine contains the elementary BN building block as its substituted derivatives. This is described later. [Pg.168]


See other pages where Ceramics substitutes is mentioned: [Pg.325]    [Pg.190]    [Pg.207]    [Pg.324]    [Pg.330]    [Pg.130]    [Pg.547]    [Pg.33]    [Pg.405]    [Pg.533]    [Pg.14]    [Pg.128]    [Pg.194]    [Pg.199]    [Pg.214]    [Pg.432]    [Pg.274]    [Pg.112]    [Pg.261]    [Pg.1127]    [Pg.2028]    [Pg.237]    [Pg.247]    [Pg.248]    [Pg.276]    [Pg.273]    [Pg.335]    [Pg.769]    [Pg.220]    [Pg.6]    [Pg.6]    [Pg.80]    [Pg.3]    [Pg.123]    [Pg.128]    [Pg.489]    [Pg.251]    [Pg.368]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.32 , Pg.33 , Pg.34 , Pg.35 , Pg.36 , Pg.37 , Pg.38 ]




SEARCH



Ceramic bone graft substitutes

Ceramics injectable bone substitutes

Ceramics synthetic bone substitutes

Designing ceramics for injectable bone graft substitutes

© 2024 chempedia.info