Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium hydroxide electrolytes

Electrolyte Potassium hydroxide Polymer membrane Immobilized liquid molten carbonate Immobilized hquid phosphoric acid Ion exchange membrane Ceramic... [Pg.19]

Alkaline (AFC) These are use by NASA on the manned space missions, and operate well at about 80 °C. They use alkaline electrolyte, potassium hydroxide, and can generate electricity with the efficiency up to 70 %. [Pg.177]

Lead-acid batteries contain the electrolyte sulfuric acid (H2SO4). NiCd batteries contain mostly the electrolyte potassium hydroxide (KOH). Both electrolytes create burns and can cause injury to the skin. In the event of electrolyte entering the eyes burns of the cornea with permanent damage are possible (Table 6.7). For first aid wash with plenty of water and obtain medical attention. [Pg.219]

Note that the electrolyte potassium hydroxide is not mentioned in Equations 19.1 and 19.2. [Pg.231]

The aluminium anode is alloyed with an element such as indium or tin which activates the aluminium so that it displays an extremely negative potential in alkaline electrolytes (potassium hydroxide). The activation effect can also be achieved by adding an element, e.g. sodium stannate to the alkaline electrolyte when using an aluminium gallium alloy as anode. [Pg.294]

This reaction has been carefully studied with the aim of obtaining the enthalpy of combustion as electrical energy, and successful hydrazine-air fuel cells have been developed using potassium hydroxide as the electrolyte. The hydrazine fuel, however, has the disadvantage that it is expensive and poisonous. [Pg.224]

Chlorine from Potassium Hydroxide Manufacture. One of the coproducts during the electrolytic production of potassium hydroxide employing mercury and membrane ceHs is chlorine. The combined name plate capacity for caustic potash during 1988 totaled 325,000 t/yr and growth of U.S. demand was expected to be steady at 2% through 1990 (68). [Pg.503]

Alkali AletalIodides. Potassium iodide [7681-11-0] KI, mol wt 166.02, mp 686°C, 76.45% I, forms colorless cubic crystals, which are soluble in water, ethanol, methanol, and acetone. KI is used in animal feeds, catalysts, photographic chemicals, for sanitation, and for radiation treatment of radiation poisoning resulting from nuclear accidents. Potassium iodide is prepared by reaction of potassium hydroxide and iodine, from HI and KHCO, or by electrolytic processes (107,108). The product is purified by crystallization from water (see also Feeds and feed additives Photography). [Pg.365]

Manganate(VI) formed in the initial oxidation process must first be dissolved in a dilute solution of potassium hydroxide. The concentrations depend on the type of electrolytic cell employed. For example, the continuous Cams cell uses 120 150 g/L KOH and 50 60 g/L K MnO the batch-operated Bitterfeld cell starts out with KOH concentrations of 150 160 g/L KOH and 200 220 g/L K MnO. These concentration parameters minimize the disproportionation of the K MnO and control the solubiUty of the KMnO formed in the course of electrolysis. [Pg.520]

In the case of the alkaline manganese dioxide cell, only high quaUty synthetic manganese dioxide, typically an EMD (224), is used and graphite is the cathode. The anode is an amalgamated 2inc. Potassium hydroxide serves as the electrolyte and the reaction can be summari2ed as follows ... [Pg.527]

Battery electrolytes are concentrated solutions of strong electrolytes and the Debye-Huckel theory of dilute solutions is only an approximation. Typical values for the resistivity of battery electrolytes range from about 1 ohmcm for sulfuric acid [7664-93-9] H2SO4, in lead—acid batteries and for potassium hydroxide [1310-58-3] KOH, in alkaline cells to about 100 ohmcm for organic electrolytes in lithium [7439-93-2] Li, batteries. [Pg.509]

This reaction is accelerated by iacreased temperature, iacreased electrolyte concentration, and by the use of sodium hydroxide rather than potassium hydroxide ia the electrolyte. It is beheved that the presence of lithium and sulfur ia the electrode suppress this problem. Generally, if the cell temperature is held below 50°C, the oxidation and/or solubiUty of iron is not a problem under normal cell operating conditions. [Pg.552]

Potassium hydroxide is the principal electrolyte of choice for the above batteries because of its compatibiUty with the various electrodes, good conductivity, and low freezing point temperature. Potassium hydroxide is a white crystalline substance having a mol wt = 56.10 density = 2.044 g/mL, and mp = 360° C (see Potassium compounds). It is hygroscopic and very soluble in water. The most conductive aqueous solution at 25 °C is at 27% KOH, but the conductivity characteristics are relatively flat over a broad range of concentrations. [Pg.567]

The characteristics for aqueous KOH (97—99) solutions vary somewhat for battery electrolytes when additives are used. Furthermore, potassium hydroxide reacts with many organics and with the carbon dioxide in air to form carbonates. The build-up of carbonates in the electrolyte is to be avoided because carbonates reduce electrolyte conductivity and electrode activity in some cases. [Pg.567]

The potassium hydroxide electrolyte used in alkaline batteries is a corrosive hazardous chemical. It is a poison and if ingested attacks the throat and stomach linings. Immediate medical attention is required. It slowly attacks skin if not rapidly washed away. Extreme care should be taken to avoid eye contact that can result in severe bums and blindness. Protective clothing and face shields or goggles should be worn when filling cells with water or electrolyte and performing other maintenance on vented batteries. [Pg.567]

At present about 77% of the industrial hydrogen produced is from petrochemicals, 18% from coal, 4% by electrolysis of aqueous solutions and at most 1% from other sources. Thus, hydrogen is produced as a byproduct of the brine electrolysis process for the manufacture of chlorine and sodium hydroxide (p. 798). The ratio of H2 Cl2 NaOH is, of course, fixed by stoichiometry and this is an economic determinant since bulk transport of the byproduct hydrogen is expensive. To illustrate the scde of the problem the total world chlorine production capacity is about 38 million tonnes per year which corresponds to 105000 toimes of hydrogen (1.3 x I0 m ). Plants designed specifically for the electrolytic manufacture of hydrogen as the main product, use steel cells and aqueous potassium hydroxide as electrolyte. The cells may be operated at atmospheric pressure (Knowles cells) or at 30 atm (Lonza cells). [Pg.39]

The poor efficiencies of coal-fired power plants in 1896 (2.6 percent on average compared with over forty percent one hundred years later) prompted W. W. Jacques to invent the high temperature (500°C to 600°C [900°F to 1100°F]) fuel cell, and then build a lOO-cell battery to produce electricity from coal combustion. The battery operated intermittently for six months, but with diminishing performance, the carbon dioxide generated and present in the air reacted with and consumed its molten potassium hydroxide electrolyte. In 1910, E. Bauer substituted molten salts (e.g., carbonates, silicates, and borates) and used molten silver as the oxygen electrode. Numerous molten salt batteiy systems have since evolved to handle peak loads in electric power plants, and for electric vehicle propulsion. Of particular note is the sodium and nickel chloride couple in a molten chloroalumi-nate salt electrolyte for electric vehicle propulsion. One special feature is the use of a semi-permeable aluminum oxide ceramic separator to prevent lithium ions from diffusing to the sodium electrode, but still allow the opposing flow of sodium ions. [Pg.235]

Another important primary battery is the mercury cell. It usually comes in very small sizes and is used in hearing aids, watches, cameras, and some calculators. The anode of this cell is a zinc-mercury amalgam the reacting species is zinc. The cathode is a plate made up of mercury(II) oxide, HgO. The electrolyte is a paste containing HgO and sodium or potassium hydroxide. The electrode reactions are... [Pg.500]

Benzohydrol has been obtained by reducing benzophenone with sodium amalgam,1 with metallic calcium and alcohol,2 with hydrogen in the presence of a catalyst,3 with zinc, aluminium or sodium in strongly alkaline solutions,4 with zinc dust and alcoholic potassium hydroxide solution,5 and electrolytically.6... [Pg.25]

Aqueous solutions of many salts, of the common strong acids (hydrochloric, nitric and sulphuric), and of bases such as sodium hydroxide and potassium hydroxide are good conductors of electricity, whereas pure water shows only a very poor conducting capability. The above solutes are therefore termed electrolytes. On the other hand, certain solutes, for example ethane-1,2-diol (ethylene glycol) which is used as antifreeze , produce solutions which show a conducting capability only little different from that of water such solutes are referred to as non-electrolytes. Most reactions of analytical importance occurring in aqueous solution involve electrolytes, and it is necessary to consider the nature of such solutions. [Pg.19]

The initial voltage of an alkaline-manganese dioxide battery is about 1,5 V. Alkaline-manganese batteries use a concentrated alkaline aqueous solution (typically in the range of 30-45 % potassium hydroxide) for electrolyte. In this concentrated electrolyte, the zinc electrode reaction proceeds, but if the concentration of the alkaline solution is low, then the zinc tends to passivate. [Pg.21]

In acidic electrolytes only lead, because it forms passive layers on the active surfaces, has proven sufficiently chemically stable to produce durable storage batteries. In contrast, in alkaline medium there are several substances basically suitable as electrode materials nickel hydroxide, silver oxide, and manganese dioxide as positive active materials may be combined with zinc, cadmium, iron, or metal hydrides. In each case potassium hydroxide is the electrolyte, at a concentration — depending on battery systems and application — in the range of 1.15 - 1,45 gem"3. Several elec-... [Pg.281]

In a simple version of a fuel cell, a fuel such as hydrogen gas is passed over a platinum electrode, oxygen is passed over the other, similar electrode, and the electrolyte is aqueous potassium hydroxide. A porous membrane separates the two electrode compartments. Many varieties of fuel cells are possible, and in some the electrolyte is a solid polymer membrane or a ceramic (see Section 14.22). Three of the most promising fuel cells are the alkali fuel cell, the phosphoric acid fuel cell, and the methanol fuel cell. [Pg.639]

A lead-acid storage battery is only one type of battery, however. Different batteries use different metals and electrolytes to make them work. For example, alkaline batteries (the ones found in flashlights, toys, and portable electronic devices) contain powdered zinc and manganese dioxide as their electrodes. They use an electrolyte made of an alkaline solution of potassium hydroxide. Most alkaline batteries have a finite amount of chemicals in them. Once the chemicals react with one another, they are used up, and the battery goes dead (is discharged) and cannot be recharged. [Pg.61]


See other pages where Potassium hydroxide electrolytes is mentioned: [Pg.407]    [Pg.189]    [Pg.928]    [Pg.699]    [Pg.417]    [Pg.407]    [Pg.189]    [Pg.928]    [Pg.699]    [Pg.417]    [Pg.325]    [Pg.479]    [Pg.292]    [Pg.454]    [Pg.454]    [Pg.26]    [Pg.519]    [Pg.10]    [Pg.70]    [Pg.181]    [Pg.398]    [Pg.523]    [Pg.542]    [Pg.2411]    [Pg.452]    [Pg.603]    [Pg.945]    [Pg.274]    [Pg.22]    [Pg.80]    [Pg.669]   
See also in sourсe #XX -- [ Pg.6 , Pg.8 , Pg.27 , Pg.31 ]




SEARCH



Electrolytes potassium

Hydroxides Potassium hydroxide

Potassium hydroxide

© 2024 chempedia.info