Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic surfactants amines

Cationic surfactants Amines and quaternary ammonium compounds, cetyl trimethyl ammonium bromide (CTAB)... [Pg.406]

The basic flow sheet for the flotation-concentration of nonsulfide minerals is essentially the same as that for treating sulfides but the family of reagents used is different. The reagents utilized for nonsulfide mineral concentrations by flotation are usually fatty acids or their salts (RCOOH, RCOOM), sulfonates (RSO M), sulfates (RSO M), where M is usually Na or K, and R represents a linear, branched, or cycHc hydrocarbon chain and amines [R2N(R)3]A where R and R are hydrocarbon chains and A is an anion such as Cl or Br . Collectors for most nonsulfides can be selected on the basis of their isoelectric points. Thus at pH > pH p cationic surfactants are suitable collectors whereas at lower pH values anion-type collectors are selected as illustrated in Figure 10 (28). Figure 13 shows an iron ore flotation flow sheet as a representative of high volume oxide flotation practice. [Pg.50]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

The higher aUphatic amine oxides are commercially important because of their surfactant properties and are used extensively in detergents. Amine oxides that have surface-acting properties can be further categorized as nonionic surfactants however, because under acidic conditions they become protonated and show cationic properties, they have also been called cationic surfactants. Typical commercial amine oxides include the types shown in Table 1. [Pg.188]

Ethylene oxide adds to the bis(2-hydtoxyethyl) teitiaiy amine in a random fashion where x y y = n y2. Ethoxylated amines, varying from strongly cationic to very weakly cationic in character, are available containing up to 50 mol of ethylene oxide/mol of amine. Ethyoxylated fatty amine quaternaries, cationic surfactants (both chloride from methyl chloride and acetate from acetic acid), ate also available. [Pg.219]

Eatty amine oxides are most frequendy prepared from alkyldimethylarnines by reaction with hydrogen peroxide. Aqueous 2-propanol is used as solvent to prepare amine oxides at concentrations of 50—60%. With water only as a solvent, amine oxides can only be prepared at lower concentrations because aqueous solutions are very viscous. Eatty amine oxides are weak cationic surfactants. [Pg.219]

Ethoxylation of alkyl amine ethoxylates is an economical route to obtain the variety of properties required by numerous and sometimes smaH-volume industrial uses of cationic surfactants. Commercial amine ethoxylates shown in Tables 27 and 28 are derived from linear alkyl amines, ahphatic /-alkyl amines, and rosin (dehydroabietyl) amines. Despite the variety of chemical stmctures, the amine ethoxylates tend to have similar properties. In general, they are yellow or amber Hquids or yellowish low melting soHds. Specific gravity at room temperature ranges from 0.9 to 1.15, and they are soluble in acidic media. Higher ethoxylation promotes solubiUty in neutral and alkaline media. The lower ethoxylates form insoluble salts with fatty acids and other anionic surfactants. Salts of higher ethoxylates are soluble, however. Oil solubiUty decreases with increasing ethylene oxide content but many ethoxylates with a fairly even hydrophilic—hydrophobic balance show appreciable oil solubiUty and are used as solutes in the oil phase. [Pg.256]

An obvious modification of the above procedure will permit the determination of long-chain amines or quaternary ammonium salts (cationic surfactants) ... [Pg.707]

NMR measurements are very useful to understand the properties of the stabilizing reagents of metal nanoparticles. Author s group reported the structure of stabilization of non-ionic and cationic surfactants on platinum nanoparticles [22] and that of ternary amines on rhodium nanoparticles [23]. Such information is considerably important for applications of nanoparticles such as... [Pg.455]

Amines are important industrial chemicals which are involved in everyday life [3, 4]. Apart from the usual classification into primary, secondary, and tertiary amines, the distinction is often made between lighf amines (less than six-carbon substituents) and fatty amines. light amines are intermediates for the synthesis of drugs, herbicides, cosmetics, etc. [3]. They also find use as vulcanization accelerators and extraction agents. Fatty amines are involved in the synthesis of corrosion inhibitors and cationic surfactants, which are used in ore flotation processes and are good fabric softeners and antistatic agents [4—6],... [Pg.91]

Hydroaminomethylation of alkenes occurred to give both n- and /. so aliphatic amines catalyzed by [Rh(cod)Cl]2 and [Ir(cod)Cl]2 with TPPTS in aqueous NH3 with CO/H2 in an autoclave. The ratio of n-and /.soprimary amines ranged from 96 4 to 84 16.178 The catalytic hydroaminomethylation of long-chain alkenes with dimethylamine can be catalyzed by a water-soluble rhodium-phosphine complex, RhCl(CO) (Tppts)2 [TPPTS P(m-C6H4S03Na)3], in an aqueous-organic two-phase system in the presence of the cationic surfactant cetyltrimethy-lammonium bromide (CTAB) (Eq. 3.43). The addition of the cationic surfactant CTAB accelerated the reaction due to the micelle effect.179... [Pg.77]

Surfactants that form micelles have also been shown to accelerate the formation of nitrosamlnes from amines and nitrite (33.) A rate enhancement of up to 80 0-fold was observed for the nitrosation of dihexylamine by nitrite in the presence of the cationic surfactant decyltrimethylammonium bromide (DTAB) at pH 3.5. A critical micelle concentration (CMC) of 0.08% of DTAB was required to cause this effect, which was attributed to a micelle with the hydrocarbon chains buried in the interior of the micelle. The positively-charged ends of the micelle would then cause an aggregation of free nitrosatable amine relative to protonated amine and thus lead to rate enhancements. Since surfactants are commonly used in water-based fluids (25-50% lubricating agent or 10-2 0% emulsifier in concentrates), concentrations above the CMC of a micelle-forming surfactant could enhance the formation of nitrosamines. [Pg.163]

Suppliers of visible spectrophotometers are reviewed in Table 1.1. Spectroscopic methods are applicable to the determination of phenols, chlorophenols, amines, mixtures of organics, boron, halogens, total nitrogen and total phosphorus in soils, cationic surfactants, carbohydrates, total nitrogen, phosphorus and sulphur in non-saline sediments, boron, total organic carbon, total sulphur and arsenic in saline sediments, cationic surfactants, adenosine triphosphate and total organic carbon in sludges. [Pg.26]

The determination of cationic surfactants in the environment by GC and GC-MS is very scarce, as described above, but this is not the case for several compounds related to cationic surfactants. Thus, long chain tertiary amines that are amenable to direct analysis by GC have been... [Pg.98]

The third industrial blend presented here as an example belongs to the cationic surfactants of fatty acid polyglycol amine type with... [Pg.165]

Fig. 2.12.1. Chemical structure of different classes of cationic surfactants (a) quaternary ammonium surfactants (quats) (b) dialkylcarboxyethyl hydroxyethyl methyl ammonium surfactants (esterquats) (c) alkyl polyglycol amine surfactants (d) quaternary perfluoro-alkyl ammonium surfactants (e) N, N, N1, JV -tetramethyl-iV, iV -didodecyle-l,3-propane-diyle-diammonium dibromide (cationic gemini surfactant). R = alkyl or benzyl group. Fig. 2.12.1. Chemical structure of different classes of cationic surfactants (a) quaternary ammonium surfactants (quats) (b) dialkylcarboxyethyl hydroxyethyl methyl ammonium surfactants (esterquats) (c) alkyl polyglycol amine surfactants (d) quaternary perfluoro-alkyl ammonium surfactants (e) N, N, N1, JV -tetramethyl-iV, iV -didodecyle-l,3-propane-diyle-diammonium dibromide (cationic gemini surfactant). R = alkyl or benzyl group.
As expected, LC separation of the dichloromethane/acetone SPE eluate in the RP-mode, presented as FIA-APCI-MS(+) in Fig. 2.12.13, was impossible because the alkyl ethoxy amines as cationic surfactants could not be eluted under conventional RP-separation conditions [37, 53]. The use of methane sulfonic acid for ion-pairing resulted in the separation of the compounds in the methanol eluate as shown as TIC (d) and selected ion trace masses (m/z 504 (a), 670 (b), and 802 (c)) in Fig. 2.12.14. Here, the short-chain ethoxy amines were eluted later than the more polar long-chain homologues [39]. [Pg.404]

The cationic surfactant mixture, which was also observed by FIA— MS(+) in the Saale River (Germany) but could not be separated under RP-Cis conditions, was classed as a cationic surfactant mixture of fatty acid ethoxy amine type with the general formula R-N H((CH2-CH2-OH)x)-(CH2-CH2-OH)yX- by FIA-MS-MS(+) [29], The CID spectrum of the parent ion at m/z 538 generated by FIA-MS-MS(+) resulted in a series of equally spaced product ions (A m/z 44) starting with 212 and ending at 520. Besides these product ions, alkyl- and ethoxylate fragment ions with low intensity were observed at 57, 71... [Pg.404]

Fig. 2.12.15. FIA-APCI-MS-MS(+) (CID) product ion mass spectrum of cationic surfactant compound (m/z 538) fatty acid polyglycol amine type observed in the Saale river, Germany (general formula R—N H((CH2—CH2—OH)x)—(CH2—CH2—OH)y X fragmentation behaviour of [M]+ parent ion at m/z 538 under CID conditions is presented... Fig. 2.12.15. FIA-APCI-MS-MS(+) (CID) product ion mass spectrum of cationic surfactant compound (m/z 538) fatty acid polyglycol amine type observed in the Saale river, Germany (general formula R—N H((CH2—CH2—OH)x)—(CH2—CH2—OH)y X fragmentation behaviour of [M]+ parent ion at m/z 538 under CID conditions is presented...
Various classes of cationic surfactants, including quats, esterquats, alkyl ethoxy amines, quaternary perfluoroalkyl ammoniums and gemini surfactants have been analysed extensively with LC—MS and LC—MS—MS techniques, and their spectra have been fully characterised. Different ionisation methods have been applied for the detection of such surfactants, including API techniques (APCI and ESI) in negative and positive modes of operation. In addition, detailed examples regarding MS—MS fragmentation of these compounds have been reported and presented in this chapter. [Pg.409]

The only cationic surfactant (Fig. 23) found in any quantity in the environment is ditallow dimethylammonium chloride (DTDMAC), which is mainly the quaternary ammonium salt distearyldimethylammonium chloride (DSDMAC). The organic chemistry and characterization of cationic surfactants has been reported and reviewed [330 - 332 ]. The different types of cationic surfactants are fatty acid amides [333], amidoamine [334], imidazoline [335], petroleum feed stock derived surfactants [336], nitrile-derived surfactants [337], aromatic and cyclic surfactants [338], non-nitrogen containing compounds [339], polymeric cationic surfactants [340], and amine oxides [341]. [Pg.51]

Cationic surfactants produce a positively charged surfactant ion in solution and are mainly quaternary nitrogen compounds such as amines and derivatives and quaternary ammonium salts. Owing to their poor cleaning properties, they are little used as detergents rather their use is a result of their bacteriocidal qualities. Relatively little is known about the mechanisms of biodegradation of these compounds. [Pg.308]

Fatty amine are nonionic at high pH, but they get protonated at low pH and become the ionizated amine salt, which is a hydrophilic cationic surfactant. Figure 17 (lower part) indicates that the phenomenology with fatty amines is absolutely identical to the previous one with fatty acid if pOH substitutes the pH [76]. [Pg.106]

R.R. Eagan, J. Am. Oil. Chem. Soc. 45, 481-486 (1968) The Preparation and Properties of Amines and Cationic Surfactants from Fatty Acids". [Pg.1334]

FTIR has also been used to confirm hydration of (PdCI4)2- ions incorporated into LB films made from the cationic surfactant DDAB (10) and the coordination modes of amine ligands of complex metal ions of M(II) (M = Pt, Pd) in LB films... [Pg.248]

Compositions and functions of typical commercial products in the 2-alkyl-l-(2-hydroxyethyl)-2-imidazolines series are given in Table 29. 2-Alkyl-l-(2-hydroxyethyl)-2-imidazolines are used in hydrocarbon and aqueous systems as antistatic agents, corrosion inhibitors, detergents, emulsifiers, softeners, and viscosity builders. They are prepared by heating the salt of a carboxylic acid with (2-hydroxyethyl)ethylenediamine at 150—160°C to form a substituted amide 1 mol water is eliminated to form the substituted imidazoline with further heating at 180—200°C. Substituted imidazolines yield three series of cationic surfactants by ethoxylation to form more hydrophilic products quatemization with benzyl chloride, dimethyl sulfate, and other alkyl halides and oxidation with hydrogen peroxide to amine oxides. [Pg.257]

Trialkylamines are used as additives in the telomerization of butadiene and water in a two-phase system (103). The catalyst comprises a palladium salt and tppms or tppts. The amines may build cationic surfactants under catalytic conditions and be capable of micelle formation. The products include up to five telomerization products (alcohols, alkenes, and ethers), and thus the reaction is nonselective. [Pg.492]


See other pages where Cationic surfactants amines is mentioned: [Pg.547]    [Pg.224]    [Pg.257]    [Pg.259]    [Pg.206]    [Pg.277]    [Pg.536]    [Pg.598]    [Pg.668]    [Pg.484]    [Pg.23]    [Pg.23]    [Pg.258]    [Pg.382]    [Pg.384]    [Pg.404]    [Pg.495]    [Pg.1074]    [Pg.21]    [Pg.210]    [Pg.259]    [Pg.169]    [Pg.239]   


SEARCH



© 2024 chempedia.info