Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tunable catalysts

Lead Telluride. Lead teUuride [1314-91 -6] PbTe, forms white cubic crystals, mol wt 334.79, sp gr 8.16, and has a hardness of 3 on the Mohs scale. It is very slightly soluble in water, melts at 917°C, and is prepared by melting lead and tellurium together. Lead teUuride has semiconductive and photoconductive properties. It is used in pyrometry, in heat-sensing instmments such as bolometers and infrared spectroscopes (see Infrared technology AND RAMAN SPECTROSCOPY), and in thermoelectric elements to convert heat directly to electricity (33,34,83). Lead teUuride is also used in catalysts for oxygen reduction in fuel ceUs (qv) (84), as cathodes in primary batteries with lithium anodes (85), in electrical contacts for vacuum switches (86), in lead-ion selective electrodes (87), in tunable lasers (qv) (88), and in thermistors (89). [Pg.69]

Chloroaluminate(III) ionic liquid systems are perhaps the best established and have been most extensively studied in the development of low-melting organic ionic liquids with particular emphasis on electrochemical and electrodeposition applications, transition metal coordination chemistry, and in applications as liquid Lewis acid catalysts in organic synthesis. Variable and tunable acidity, from basic through neutral to acidic, allows for some very subtle changes in transition metal coordination chemistry. The melting points of [EMIM]C1/A1C13 mixtures can be as low as -90 °C, and the upper liquid limit almost 300 °C [4, 6]. [Pg.43]

One of the key factors controlling the reaction rate in multiphasic processes (for reactions talcing place in the bulk catalyst phase) is the reactant solubility in the catalyst phase. Thanks to their tunable solubility characteristics, the use of ionic liquids as catalyst solvents can be a solution to the extension of aqueous two-phase catalysis to organic substrates presenting a lack of solubility in water, and also to moisture-sensitive reactants and catalysts. With the different examples presented below, we show how ionic liquids can have advantageous effects on reaction rate and on the selectivity of homogeneous catalyzed reactions. [Pg.262]

In comparison with classical processes involving thermal separation, biphasic techniques offer simplified process schemes and no thermal stress for the organometal-lic catalyst. The concept requires that the catalyst and the product phases separate rapidly, to achieve a practical approach to the recovery and recycling of the catalyst. Thanks to their tunable solubility characteristics, ionic liquids have proven to be good candidates for multiphasic techniques. They extend the applications of aqueous biphasic systems to a broader range of organic hydrophobic substrates and water-sensitive catalysts [48-50]. [Pg.278]

The previous sections have shown that desihcation of ZSM-5 zeohtes results in combined micro- and mesoporous materials with a high degree of tunable porosity and fuUy preserved Bronsted acidic properties. In contrast, dealumination hardly induces any mesoporosityin ZSM-5 zeolites, due to the relatively low concentration of framework aluminum that can be extracted, but obviously impacts on the acidic properties. Combination of both treatments enables an independent tailoring of the porous and acidic properties providing a refined flexibility in zeolite catalyst design. Indeed, desihcation followed by a steam treatment to induce dealumination creates mesoporous zeolites with extra-framework aluminum species providing Lewis acidic functions [56]. [Pg.43]

Abstract The unique and readily tunable electronic and spatial characteristics of ferrocenes have been widely exploited in the field of asymmetric catalysis. The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst enviromnent. Instead, the Fe center can influence the catalytic process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. Of increasing importance are also half sandwich complexes in which Fe is acting as a mild Lewis acid. Like ferrocene, half sandwich complexes are often relatively robust and readily accessible. This chapter highlights recent applications of ferrocene and half sandwich complexes in which the Fe center is essential for catalytic applications. [Pg.139]

In this chapter, we demonstrate the design of high surface area catalysts with controlled, tunable properties... [Pg.149]

Pt cuboctahedra and octahedra were also deposited on the silica substrate in an identical manner. These 2D model catalysts have the attributes of tunable particle density and the deposition of the different particles changes the relative ratio of exposed [100] and [11 1] surfaces. [Pg.153]

Gas-expanded liquids (GXLs) are emerging solvents for environmentally benign reactive separation (Eckert et al., op. cit.). GXLs, obtained by mixing supercritical CO2 with normal liquids, show intermediate properties between normal liquids and SCFs both in solvation power and in transport properties and these properties are highly tunable by simple pressure variations. Applications include chemical reactions with improved transport, catalyst recycling, and product separation. [Pg.18]

The development of catalysts for the oxidation of organic compounds by air under ambient conditions is of both academic and practical importance (1). Formaldehyde is an important intermediate in synthetic chemistry as well as one of the major pollutants in the human environment (2). While high temperature (> 120 °C) catalytic oxidations are well known (3), low temperature aerobic oxidations under mild conditions have yet to be reported. Polyoxometalates (POMs) are attractive oxidation catalysts because these extensively modifiable metal oxide-like structures have high thermal and hydrolytic stability, tunable acid and redox properties, solubility in various media, etc. (4). Moreover, they can be deposited on fabrics and porous materials to render these materials catalytically decontaminating (5). Here we report the aerobic oxidation of formaldehyde in water under mild conditions (20-40 °C, 1 atm of air or 02) in the presence of Ce-substituted POMs (Ce-POMs). [Pg.429]

CD-modified nanoparticles sites. These studies afford an interesting example of tunable catalyst design at the molecular level. Manipulation of the surface of cat-alytically active metal nanoparticles seems possible, and can be used to modulate the catalytic activity on demand. [Pg.232]

Tunable uv-vis lasers, 23 144 Tuneable separation systems, 22 654 Tung oil, 9 143, 149, 150, 20 814-817 Tungstate catalysts, 22 48 Tungstates, 25 381-382 properties of, 25 382t Tungsten (W). See Nickel-chromium-molybdenum (tungsten) alloys, 25 349-376... [Pg.976]

Bonnemann, H. and Nagabhushana, K.S., Tunable synthetic approaches for the optimization of nanostmctured fuel cell catalysts an overview, Chem. Ind. Belgrade J., 58, 271, 2004. [Pg.86]

Textural mesoporosity is a feature that is quite frequently found in materials consisting of particles with sizes on the nanometer scale. For such materials, the voids in between the particles form a quasi-pore system. The dimensions of the voids are in the nanometer range. However, the particles themselves are typically dense bodies without an intrinsic porosity. This type of material is quite frequently found in catalysis, e.g., oxidic catalyst supports, but will not be dealt with in the present chapter. Here, we will learn that some materials possess a structural porosity with pore sizes in the mesopore range (2 to 50 nm). The pore sizes of these materials are tunable and the pore size distribution of a given material is typically uniform and very narrow. The dimensions of the pores and the easy control of their pore sizes make these materials very promising candidates for catalytic applications. The present chapter will describe these rather novel classes of mesoporous silica and carbon materials, and discuss their structural and catalytic properties. [Pg.118]

In this section a series of chemical designs of Nb structures on Si02 is introduced as an example of a one-component tunable catalyst, where the selectivity of ethanol reactions strongly depends on the Nb structures. [Pg.244]

Many solvent properties are related to density and vary with pressure in a SCF. These include the dielectric constant (er), the Hildebrand parameter (S) and n [5], The amount a parameter varies with pressure is different for each substance. So, for example, for scC02, which is very nonpolar, there is very little variation in the dielectric constant with pressure. However, the dielectric constants of both water and fluoroform vary considerably with pressure (Figure 6.3). This variation leads to the concept of tunable solvent parameters. If a property shows a strong pressure dependence, then it is possible to tune the parameter to that required for a particular process simply by altering the pressure [6], This may be useful in selectively extracting natural products or even in varying the chemical potential of reactants and catalysts in a reaction to alter the rate or product distributions of the reaction. [Pg.133]


See other pages where Tunable catalysts is mentioned: [Pg.1073]    [Pg.1073]    [Pg.258]    [Pg.281]    [Pg.73]    [Pg.145]    [Pg.146]    [Pg.151]    [Pg.265]    [Pg.438]    [Pg.85]    [Pg.25]    [Pg.75]    [Pg.165]    [Pg.266]    [Pg.19]    [Pg.191]    [Pg.60]    [Pg.173]    [Pg.367]    [Pg.148]    [Pg.1188]    [Pg.1290]    [Pg.1448]    [Pg.17]    [Pg.86]    [Pg.103]    [Pg.519]    [Pg.34]    [Pg.564]    [Pg.45]    [Pg.417]    [Pg.11]    [Pg.265]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



En Route to Tunable Catalysts

Oxidation catalysts, tunable electronic

Tunability

Tunable

© 2024 chempedia.info