Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-surface-area catalyst

Along with acrylonitrile (ACN), propionitrile (PPN) was also produced. Heahng to 400 °C in nitrogen activated the catalysts. High surface area MgO produced the best yields of acrylonitrile and propionitrile but favored the hydrogenated nitrile. The low surface area MgO was considerably less effechve at hydrogenahon and... [Pg.834]

The large-scale CCVD process can be conducted on two different types of catalysts, high-surface area powders and floating metal clusters produced in situ by decomposition of a fluid precursor. [Pg.459]

Catalysts and adsorbents Silica alumina solid acid catalysts, high surface area catalyst support, silica support desiooant... [Pg.475]

Due to the ease of preparation, impregnation is one of the most commonly used techniques to fabricate catalysts. High-surface-area carbon black can be impregnated with catalyst precursors by mixing the two in an aqueous solution... [Pg.450]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Efficient use of a catalyst requires high rates of reaction per unit volume and, since reaction takes place on the surface of a solid, catalysts have high surface areas per unit volume. Therefore, tlie typical catalyst is porous, witli... [Pg.2701]

Hydrogen Chloride as By-Product from Chemical Processes. Over 90% of the hydrogen chloride produced in the United States is a by-product from various chemical processes. The cmde HCl generated in these processes is generally contaminated with impurities such as unreacted chlorine, organics, chlorinated organics, and entrained catalyst particles. A wide variety of techniques are employed to treat these HCl streams to obtain either anhydrous HCl or hydrochloric acid. Some of the processes in which HCl is produced as a by-product are the manufacture of chlorofluorohydrocarbons, manufacture of aUphatic and aromatic hydrocarbons, production of high surface area siUca (qv), and the manufacture of phosphoric acid [7664-38-2] and esters of phosphoric acid (see Phosphoric acid and phosphates). [Pg.445]

There are, however, continuing difficulties for catalytic appHcations of ion implantation. One is possible corrosion of the substrate of the implanted or sputtered active layer this is the main factor in the long-term stabiHty of the catalyst. Ion implanted metals may be buried below the surface layer of the substrate and hence show no activity. Preparation of catalysts with high surface areas present problems for ion beam techniques. Although it is apparent that ion implantation is not suitable for the production of catalysts in a porous form, the results indicate its strong potential for the production and study of catalytic surfaces that caimot be fabricated by more conventional methods. [Pg.398]

Preparation of Pillared Clay Catalysts. PAG products are used for the preparation of zeolite-like catalysts by intercalation, the insertion of Al polycations molecules between the alurninosiHcate sheets of clay (3,33). Aqueous clay suspensions are slowly added to vigorously stirred PAG solutions, and the reaction mixture is aged for several hours. The clay is separated from the PAG solution and washed free of chloride ion. The treated clay is first dried at low temperature and then calcined in air at 450—500°G, producing a high surface area material having a regular-sized pore opening of about 0.6 to... [Pg.180]

The primary determinant of catalyst surface area is the support surface area, except in the case of certain catalysts where extremely fine dispersions of active material are obtained. As a rule, catalysts intended for catalytic conversions utilizing hydrogen, eg, hydrogenation, hydrodesulfurization, and hydrodenitrogenation, can utilize high surface area supports, whereas those intended for selective oxidation, eg, olefin epoxidation, require low surface area supports to avoid troublesome side reactions. [Pg.194]

Some catalyst supports rely on a relatively low surface area stmctural member coated with a layer of a higher surface area support material. The automotive catalytic converter monolith support is an example of this technology. In this appHcation, a central core of multichanneled, low surface area, extmded ceramic about 10 cm in diameter is coated with high surface area partially hydrated alumina onto which are deposited small amounts of precious metals as the active catalytic species. [Pg.194]

The most widely used exhaust control device consists of a ceramic monolith with a thin-waHed open honeycomb stmcture. The accessible surface of this monolith system is iacreased by applyiag a separate coatiag, a wash coat, of a high surface area material such as gamma-alumiaa with the catalyticaHy active species impregaated iato this washcoat. The catalyst aeeds to oxidize hydrocarboas, coavert CO to CO2, and reduce NO. The whole system forms a catalytic converter that, suitably encased, is placed between the engine and the muffler/silencer unit. [Pg.370]

Dimensions. Most coUoids have aU three dimensions within the size range - 100 nm to 5 nm. If only two dimensions (fibriUar geometry) or one dimension (laminar geometry) exist in this range, unique properties of the high surface area portion of the material may stiU be observed and even dominate the overaU character of a system (21). The non-Newtonian rheological behavior of fibriUar and laminar clay suspensions, the reactivity of catalysts, and the critical magnetic properties of multifilamentary superconductors are examples of the numerous systems that are ultimately controUed by such coUoidal materials. [Pg.393]

An unstabilized high surface area alumina siaters severely upon exposure to temperatures over 900°C. Sintering is a process by which the small internal pores ia the particles coalesce and lose large fractions of the total surface area. This process is to be avoided because it occludes some of the precious metal catalyst sites. The network of small pores and passages for gas transfer collapses and restricts free gas exchange iato and out of the activated catalyst layer resulting ia thermal deactivation of the catalyst. [Pg.486]

Catalysts vary both in terms of compositional material and physical stmcture (18). The catalyst basically consists of the catalyst itself, which is a finely divided metal (14,17,19) a high surface area carrier and a support stmcture (see Catalysts, supported). Three types of conventional metal catalysts are used for oxidation reactions single- or mixed-metal oxides, noble (precious) metals, or a combination of the two (19). [Pg.502]

The precious metal or metal oxide imparts high intrinsic activity, the carrier provides a stable, high surface area for catalyst dispersion, and the mechanical support gives a high geometric surface area for physical support and engineering design features (20). Only the correct combination of these... [Pg.502]

Carrier. The metal catalyst is generally dispersed on a high surface area carrier, ie, the carrier is given a washcoat of catalyst, such that very small (2—3 nm dia) precious metal crystaUites ate widely dispersed over the surface area, serving two basic functions. It maximizes the use of the cosdy precious metal, and provides a large surface area thereby increasing gas contact and associated catalytic reactions (18). [Pg.503]


See other pages where High-surface-area catalyst is mentioned: [Pg.120]    [Pg.272]    [Pg.383]    [Pg.120]    [Pg.272]    [Pg.383]    [Pg.584]    [Pg.729]    [Pg.938]    [Pg.1780]    [Pg.38]    [Pg.88]    [Pg.262]    [Pg.369]    [Pg.184]    [Pg.547]    [Pg.134]    [Pg.57]    [Pg.172]    [Pg.340]    [Pg.58]    [Pg.40]    [Pg.307]    [Pg.198]    [Pg.201]    [Pg.222]    [Pg.380]    [Pg.55]    [Pg.58]    [Pg.458]    [Pg.465]    [Pg.503]    [Pg.503]    [Pg.503]    [Pg.504]    [Pg.246]    [Pg.436]   


SEARCH



Catalyst surface area

High Surface Area Metal Fluorides as Catalysts

High surface

High surface area cobalt-on-alumina catalyst

Surface catalysts

The Active Site in High Surface Area Catalysts

© 2024 chempedia.info