Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst catalytic processes

Besides what has been stated above, the following catalysts/catalytic processes find wide applications in industry. [Pg.31]

Adsorption, Diffusion, and Exchange Processes in Proton Exchange Membrane Fuel Cell Catalysts (Catalytic Processes in Proton Exchange Membrane Fuel Cells)... [Pg.345]

Unfortunately, despite much research into the fundamentals of catalysis, the choice of catalyst is still largely empirical. The catalytic process can be homogeneous or heterogeneous. [Pg.46]

C. L. Thomas, Catalytic Processes arui Proven Catalysts, Academic, New York, 1970. [Pg.743]

A catalyst is a material that accelerates a reaction rate towards thennodynamic equilibrium conversion without itself being consumed in the reaction. Reactions occur on catalysts at particular sites, called active sites , which may have different electronic and geometric structures than neighbouring sites. Catalytic reactions are at the heart of many chemical industries, and account for a large fraction of worldwide chemical production. Research into fiindamental aspects of catalytic reactions has a strong economic motivating factor a better understanding of the catalytic process... [Pg.937]

Apart from using an environmentally friendly solvent, it is also important to clean up the chemical reactions themselves by reducing the number and amount of side-products formed. For this purpose catalysts are a versatile tool. Catalysts have been used for thousands of years in processes such as fermentation and their importance has grown ever since. In synthetic oiganic chemistry, catalysts have found wide applications. In the majority of these catalytic processes, organic solvents are used, but also here the use of water is becoming increasingly popular . [Pg.2]

The selective addition of the second HCN to provide ADN requires the concurrent isomerisation of 3PN to 4-pentenenitrile [592-51 -8] 4PN (eq. 5), and HCN addition to 4PN (eq. 6). A Lewis acid promoter is added to control selectivity and increase rate in these latter steps. Temperatures in the second addition are significandy lower and practical rates may be achieved above 20°C at atmospheric pressure. A key to the success of this homogeneous catalytic process is the abiUty to recover the nickel catalyst from product mixture by extraction with a hydrocarbon solvent. 2-Methylglutaronitrile [4553-62-2] MGN, ethylsuccinonitfile [17611-82-4] ESN, and 2-pentenenitrile [25899-50-7] 2PN, are by-products of this process and are separated from adiponitrile by distillation. [Pg.221]

Xylene Isomerization. After separation of the preferred xylenes, ie, PX or OX, using the adsorption or crystallization processes discussed herein, the remaining raffinate stream, which tends to be rich in MX, is typically fed to a xylenes isomerization unit in order to further produce the preferred xylenes. Isomerization units are fixed-bed catalytic processes that are used to produce a close-to-equiUbrium mixture of the xylenes. To prevent the buildup of EB in the recycle loop, the catalysts are also designed to convert EB to either xylenes, benzene and lights, or benzene and diethylbenzene. [Pg.421]

Dual Function Catalytic Processes. Dual-function catalytic processes use an acidic oxide support, such as alumina, loaded with a metal such as Pt to isomerize the xylenes as weH as convert EB to xylenes. These catalysts promote carbonium ion-type reactions as weH as hydrogenation—dehydrogenation. In the mechanism for the conversion of EB to xylenes shown, EB is converted to xylenes... [Pg.421]

Patents claiming specific catalysts and processes for thek use in each of the two reactions have been assigned to Japan Catalytic (45,47—49), Sohio (50), Toyo Soda (51), Rohm and Haas (52), Sumitomo (53), BASF (54), Mitsubishi Petrochemical (56,57), Celanese (55), and others. The catalysts used for these reactions remain based on bismuth molybdate for the first stage and molybdenum vanadium oxides for the second stage, but improvements in minor component composition and catalyst preparation have resulted in yields that can reach the 85—90% range and lifetimes of several years under optimum conditions. Since plants operate under more productive conditions than those optimum for yield and life, the economically most attractive yields and productive lifetimes maybe somewhat lower. [Pg.152]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

Thermal polymerization is not as effective as catalytic polymerization but has the advantage that it can be used to polymerize saturated materials that caimot be induced to react by catalysts. The process consists of the vapor-phase cracking of, for example, propane and butane, followed by prolonged periods at high temperature (510—595°C) for the reactions to proceed to near completion. Olefins can also be conveniendy polymerized by means of an acid catalyst. Thus, the treated olefin-rich feed stream is contacted with a catalyst, such as sulfuric acid, copper pyrophosphate, or phosphoric acid, at 150—220°C and 1035—8275 kPa (150—1200 psi), depending on feedstock and product requirement. [Pg.208]

Other methods are based on bromochloroethane [25620-54-6] trichloroethyl acetate [625-24-1tetrachloroethane [79-34-5] and catalytic cracking of trichloroethane (5). Catalytic processes produce as by-product HCl, rather than less valuable salts, but yields of vinyUdene chloride have been too low for commercial use of these processes. However, good results have been reported with metal-salt catalysts (6—8). [Pg.428]

Catalytic Cracking. This is a refinery process that produces a mixture of butylenes and butanes with very small amounts of butadiene. The specific composition of the mixture depends on the catalyst and process conditions. Most catalytic cracking processes employ temperatures about... [Pg.367]

The most dominant catalytic process in the United States is the fluid catalytic cracking process. In this process, partially vaporized medium-cut petroleum fractions called gas oils are brought in contact with a hot, moving, freshly regenerated catalyst stream for a short period of time at process conditions noted above. Spent catalyst moves continuously into a regenerator where deposited coke on the catalyst is burnt off. The hot, freshly regenerated catalyst moves back to the reactor to contact the hot gas oil (see Catalysts, regeneration). [Pg.367]

When two reactants in a catalytic process have such different solubiUty properties that they can hardly both be present in a single Hquid phase, the reaction is confined to a Hquid—Hquid interface and is usually slow. However, the rate can be increased by orders of magnitude by appHcation of a phase-transfer catalyst (40,41), and these are used on a large scale in industrial processing (see Catalysts, phase-TRANSFEr). Phase-transfer catalysts function by faciHtating mass transport of reactants between the Hquid phases. Often most of the reaction takes place close to the interface. [Pg.169]

Cost. The catalytically active component(s) in many supported catalysts are expensive metals. By using a catalyst in which the active component is but a very small fraction of the weight of the total catalyst, lower costs can be achieved. As an example, hydrogenation of an aromatic nucleus requires the use of rhenium, rhodium, or mthenium. This can be accomplished with as fittie as 0.5 wt % of the metal finely dispersed on alumina or activated carbon. Furthermore, it is almost always easier to recover the metal from a spent supported catalyst bed than to attempt to separate a finely divided metal from a liquid product stream. If recovery is efficient, the actual cost of the catalyst is the time value of the cost of the metal less processing expenses, assuming a nondeclining market value for the metal. Precious metals used in catalytic processes are often leased. [Pg.193]

Hydrocarbons from Synthesis Gas and Methanol. Two very important catalytic processes in which hydrocarbons are formed from synthesis gas are the Sasol Eischer-Tropsch process, in which carbon monoxide and hydrogen obtained from coal gasification are converted to gasoline and other products over an iron catalyst, and the Mobil MTG process, which converts methanol to gasoline range hydrocarbons using ZSM-5-type 2eohte catalysts. [Pg.199]

Hydration. Ethanol [64-17-5] is manufactured from ethylene by direct catalytic hydration over a H PO —Si02 catalyst at process conditions of 300°C and 7.0 MPa (1015 psi). Diethyl ether is also formed as a by-product. [Pg.433]

L oss of Catalyst by Vapor Transport. The direct volatilisation of catalytic metals is generally not a factor in catalytic processes, but catalytic metal can be lost through formation of metal carbonyl oxides, sulfides, and hahdes in environments containing CO, NO, O2 and H2S, and halogens (24). [Pg.509]


See other pages where Catalyst catalytic processes is mentioned: [Pg.95]    [Pg.95]    [Pg.485]    [Pg.2594]    [Pg.75]    [Pg.164]    [Pg.169]    [Pg.79]    [Pg.152]    [Pg.184]    [Pg.437]    [Pg.206]    [Pg.207]    [Pg.173]    [Pg.156]    [Pg.156]    [Pg.517]    [Pg.519]    [Pg.526]    [Pg.188]    [Pg.42]    [Pg.249]    [Pg.367]    [Pg.368]    [Pg.50]    [Pg.169]    [Pg.177]    [Pg.180]    [Pg.194]    [Pg.483]   
See also in sourсe #XX -- [ Pg.239 , Pg.240 , Pg.241 , Pg.242 , Pg.243 , Pg.244 , Pg.245 , Pg.246 ]




SEARCH



Catalysts processes

Catalytic catalyst

Catalytic processes

Heterogeneous catalytic processes catalyst testing

New Catalysts and Catalytic Processes

Nickel Catalysts and Catalytic Processes

© 2024 chempedia.info