Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calibration zeroing

Analyte Sample (Calibrate)/ Zero Periods (min) Lag Timea (min) Rise Timeb (min) Detection Limitc (pptrv) Linearity Limit (ppbv)... [Pg.80]

A calibration check of controllers should be made on a regular basis. The ISO 9000 standard reviews developing the frequency calibration checks. A visual examination should be made before proceeding with the check to determine that no damage exists. Some of the more common problems caused by a plant s hostile environment that can effect equipment such as sensors/transducers are noise interference, mounting holes (must be concentric and clean), installation, diaphragm considerations, and transducer calibration. Zero balance, full-scale sensitivity, and R-cal at 80% parameter reference points for calibration can be used. The sensor/transducer manufacturer provides these parameters.154... [Pg.176]

Detailed interpretation of the chemical isomer shift value (which is used in this book as the calibration zero at room temperature) is difficult. There is no defined orbital state as in the Fe " " and Fe complexes, and the chemical isomer shift will be affected by both a direct 4s-conduction band contribution and indirect 3d-shielding of the core 3j-electrons. The problems involved have been discussed in detail [7]. The free-atom configuration 3band structure, but a density-of-states approach favours and the Mdssbauer data suggests The temperature... [Pg.306]

The operation is quite simple One sets the frequency to the lowest value, adjusts the gain and phase to the desired sensitivity using a special calibration standard discussed below and performs a zero-compensation on a defect free zone of the standard. Now one is ready to test. As one slides the probe across the surface of an aluminum structure, a signal response will be indicative of the presence of corrosion or of the presence of a subsurface edge. [Pg.286]

Calibration procedure bases on rope specimens and corresponds to the Standard Pratice ASTM 1574. It takes a piece of the rope under test having a nominal metallic cross-section area (LMA=0) to set zero point of the instrument. Rope section with the LMA value known is used to set the second point of LMA calibration charactiristics. It is possible to use the air point calibration when there is no rope in a magnetic head (LMA=100%). [Pg.337]

Zero setup segment Sect.l ( 0% LMA ) cal.standard N2 Flaw setup segment Sect.2 ( 12.4% LMA ) cal.standard N2 LF calibration... [Pg.339]

The calibration graph for the probe using a strength machine, has been shown in Fig. 7 It can be observed that the dependence of indications of the device of Wirotest type on the loading is linear within the proportionality limit scope. After unloading the indications do not return to zero, but show own stress caused in effect of plastic deformation of the tested sample... [Pg.387]

The response surfaces in Figure 14.2 are plotted for a limited range of factor levels (0 < A < 10, 0 < B < 10), but can be extended toward more positive or more negative values. This is an example of an unconstrained response surface. Most response surfaces of interest to analytical chemists, however, are naturally constrained by the nature of the factors or the response or are constrained by practical limits set by the analyst. The response surface in Figure 14.1, for example, has a natural constraint on its factor since the smallest possible concentration for the analyte is zero. Furthermore, an upper limit exists because it is usually undesirable to extrapolate a calibration curve beyond the highest concentration standard. [Pg.667]

Other instrumental advantages include its high sensitivity and a linear mass scale to m/z 10,000 at full sensitivity. The linearity of the mass scale means that it is necessary to calibrate the spectrometer using a single or sometimes two known mass standards. Some calibration is necessary because the start of the mass scale is subject to some instrumental zero offset. The digitized accumulation of spectra provides a better signal-to-noise ratio than can be obtained from one spectrum alone. [Pg.167]

Quality control elements required by the instrumental analyzer method include analyzer calibration error ( 2 percent of instrument span allowed) verifying the absence of bias introduced by the sampling system (less than 5 percent of span for zero and upscale cah-bration gases) and verification of zero and calibration drift over the test period (less than 3 percent of span of the period of each rim). [Pg.2200]

Instrumentation Calibration may be required for the instruments installed in the field. This is typically the job of an instrument mechanic. Orifice plates should be inspected for physical condition and suitabihty. Where necessary, they should be replaced. Pressure and flow instruments should be zeroed. A prehminary material balance developed as part of the prehminary test will assist in identifying flow meters that provide erroneous measurements and indicating missing flow-measurement points. [Pg.2557]

The worked out soi ption-photometric method of NIS determination calls preliminary sorption concentration of NIS microamounts from aqueous solutions on silica L5/40. The concentrate obtained is put in a solution with precise concentration of bromthymol-blue (BTB) anionic dye and BaCl, excess. As a result the ionic associate 1 1 is formed and is kept comparatively strongly on a surface. The BTB excess remains in an aqueous phase and it is easy to determinate it photometrically. The linear dependence of optical density of BTB solutions after soi ption on NIS concentration in an interval ITO - 2,5T0 M is observed. The indirect way of the given method is caused by the fact the calibration plot does not come from a zero point of coordinates, and NIS zero concentration corresponds to initial BTB concentration in a solution. [Pg.107]

The assessor should also find out whether an effective testing program is in place to help ensure the serviceability of process measurement equipment. The successful toller should have an established calibration program to address the accuracy of critical measurement equipment. Safety critical process parameters should be monitored and critical process equipment should automatically interlock when monitoring instrumentation detects safety critical deviations. Interlocks should either facilitate a remedy to the critical deviation or bring the process to the zero energy state. These instruments and interlocking devices should be routinely tested to ensure operational reliability. [Pg.29]

Corrective action Do multipoint calibration invalidate data collection since last zero/ span check within control limits... [Pg.224]

Documentation Data volume includes all quality control forms, e.g., zero/span control charts and multipoint calibration results... [Pg.224]

Fig. 25-2. Double-beam, double-pass transmissometer for measuring smoke density in stacks. A[, chopper wheel A, beam gating wheel A3, aperture D, detector Fj, spectral filter F2, solenoid-activated neutral density filter L, lamp M, half-mirror/beam splitter Rj, solenoid-activated zero calibration reflector R2, retroreflector (alignment bullseye not shown). Design patented. Source Drawing courtesy of Lear Siegler, Inc. Fig. 25-2. Double-beam, double-pass transmissometer for measuring smoke density in stacks. A[, chopper wheel A, beam gating wheel A3, aperture D, detector Fj, spectral filter F2, solenoid-activated neutral density filter L, lamp M, half-mirror/beam splitter Rj, solenoid-activated zero calibration reflector R2, retroreflector (alignment bullseye not shown). Design patented. Source Drawing courtesy of Lear Siegler, Inc.
Check continuity zero and adjust Calibrate as required Chemical Cleaning Activation Passivation Rinse... [Pg.331]

Calibrate the detector tube pump for proper volume measurement at least quarterly. Simply connect the pump directly to the bubble meter with a detector mbe in-line. Use a detector mbe and pump from the same manufacturer. Wet the inside of the 100 cc bubble meter with soap solution. For volume calibration, experiment to get the soap bubble even with the zero ml mark of the buret. For piston-type pumps, pull the pump handle all the way out (full pump stroke) and note where the soap bubble stops for bellows-type pumps, compress the bellows fully for automatic pumps, program the pump to take a full pump stroke. [Pg.249]

The records required are only for formal calibrations and verification and not for instances of self-calibration or zeroing using null adjustment mechanisms. While calibration usually involves some adjustment to the device, non-adjustable devices are often verified rather than calibrated. However, as was discussed previously, it is not strictly correct to regard all calibration as involving some adjustment. Slip gages and surface tables are calibrated but not adjusted. An error record is produced to enable users to determine the uncertainty of measurement in a particular range or location and compensate for the inaccuracies when recording the results. [Pg.418]

For bonded atoms, the off-diagonal terms (where i j) are taken to depend on tjje type and length of the bond joining the atoms on which the basis functions y- and Xj 0 centred. The entire integral is written as a constant, 0ij, which is not the same as the fixY in Hiickel 7r-electron theory. The are taken to be parameters, fixed by calibration against experiment. It is usual to set Pij to zero when the pair of atoms are not formally bonded. [Pg.139]

Pople, Beveridge and Dobosh introduced the intermediate neglect of differential overlap model (INDO) in 1967. INDO is CNDO/2 with a more realistic treatment of the one-centre two-electron integrals. In the spirit of such models, the non-zero integrals were calibrated against experiment rather than being calculated fi om first principles. The authors concluded that, although INDO was a little better than... [Pg.150]

There are potential errors or problems that limit the accuracy of this alignment technique. The common ones include data recording errors, failure to correct for indicator sag, mechanical looseness in the fixture installation, and failure to properly zero and/or calibrate the dial indicator. [Pg.922]

The zero-resistance ammeter is seldom employed for routine testing. This instrument requires careful handling to avoid damage, in particular to the galvanometer. Usually two permanent test leads are installed at a set distance apart, and by the initial use of a zero-resistance ammeter a calibration chart of potential between the two leads and current in the structure is drawn up. Thus when routine testing is made, it is only necessary to measure the... [Pg.250]

When plotting the standard curve it is customary to assign a transmission of 100 per cent to the blank solution (reagent solution plus water) this represents zero concentration of the constituent. It may be mentioned that some coloured solutions have an appreciable temperature coefficient of transmission, and the temperature of the determination should not differ appreciably from that at which the calibration curve was prepared. [Pg.674]


See other pages where Calibration zeroing is mentioned: [Pg.172]    [Pg.80]    [Pg.88]    [Pg.112]    [Pg.172]    [Pg.80]    [Pg.88]    [Pg.112]    [Pg.286]    [Pg.337]    [Pg.778]    [Pg.802]    [Pg.1959]    [Pg.430]    [Pg.207]    [Pg.110]    [Pg.450]    [Pg.626]    [Pg.633]    [Pg.810]    [Pg.173]    [Pg.248]    [Pg.330]    [Pg.923]    [Pg.144]    [Pg.88]    [Pg.89]    [Pg.536]    [Pg.729]    [Pg.730]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Calibration zero intercept

External Linear Calibration With a Zero Intercept

© 2024 chempedia.info