Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium chloride solution preparation

Calcium chloride (CaCk) solution prepare 2 M solution in sterile water, then filter in hood, and store at room temperature. [Pg.256]

Lead formate separates from aqueous solution without water of crystallisation. It can therefore be used for the preparation of anhydrous formic acid. For this purpose, the powdered lead formate is placed in the inner tube of an ordinary jacketed cond ser, and there held loosely in position by plugs of glass-wool. The condenser is then clamped in an oblique position and the lower end fitted into a receiver closed with a calcium chloride tube. A current of dry hydrogen sulphide is passed down the inner tube of the condenser, whilst steam is passed through the jacket. The formic acid which is liberated... [Pg.114]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

In a 250 ml. separatory funnel place 25 g. of anhydrous feri.-butyl alcohol (b.p. 82-83°, m.p. 25°) (1) and 85 ml. of concentrated hydrochloric acid (2) and shake the mixture from time to time during 20 minutes. After each shaking, loosen the stopper to relieve any internal pressure. Allow the mixture to stand for a few minutes until the layers have separated sharply draw off and discard the lower acid layer. Wash the halide with 20 ml. of 5 per cent, sodium bicarbonate solution and then with 20 ml. of water. Dry the preparation with 5 g. of anhydrous calcium chloride or anhydrous calcium, sulphate. Decant the dried liquid through a funnel supporting a fluted Alter paper or a small plug of cotton wool into a 100 ml. distilling flask, add 2-3 chips of porous porcelain, and distil. Collect the fraction boiling at 49-51°. The yield of feri.-butyl chloride is 28 g. [Pg.276]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Chlorobenzene. Prepare a solution of phenyldiazonium chloride from 31 g. (30 -5 ml.) of aniUne, 85 ml. of concentrated hydrochloric acid, 85 ml, of water, and a solution of 24 g. of sodium nitrite in 50 ml. of water (for experimental details, see Section IV,60). Prepare cuprous chloride from 105 g. of crystallised copper sulphate (Section 11,50,1), and dissolve it in 170 ml. of concentrated hydrochloric acid. Add the cold phenyl diazonium chloride solution with shaking or stirring to the cold cuprous chloride solution allow the mixture to warm up to room temperature. Follow the experimental details given above for p-chlorotoluene. Wash the chlorobenzene separated from the steam distillate with 40 ml. of 10 per cent, sodium hydroxide solution (to remove phenol), then with water, dry with anhydrous calcium chloride or magnesium sulphate, and distil. Collect the chlorobenzene (a colourless liquid) at 131-133° (mainly 133°), The yield is 29 g. [Pg.601]

To prepare crystalline monoperphthalic acid, place the thoroughly dry ethereal solution (4) in a distilling flask equipped with a capillary tube connected with a calcium chloride or cotton wool drying tube, and attach the flask to a water pump. Evaporate the ether without the application of heat (ice will form on the flask) to a thin syrup (about 150 ml.). Transfer the syrup to an evaporating dish, rinse the flask with a little anhydrous ether, and add the rinsings to the syrup. Evaporate the remainder of the ether in a vacuum desiccator over concentrated sulphuric acid about 30 g. of monoperphthalic acid, m.p. 110° (decomp.), is obtained. [Pg.810]

Preparation of palladium - calcium carbonate catalyst. Prepare 60 g. of precipitated calcium carbonate by mixing hot solutions of the appropriate quantities of A.R. calcium chloride and A.R. sodium carbonate. Suspend the calcium carbonate in water and add a solution containing 1 g. of palladium chloride. Warm the suspension until all the palladium is precipitated as the hydroxide upon the calcium carbonate, i.e., until the supernatant liquid is colourless. Wash several times with... [Pg.891]

Purification of the Methylamine HCI is in order now, so transfer all of the crude product to a 500mL flask and add either 250mL of absolute Ethanol (see end of FAQ for preparing this) or, ideally, n-Butyl Alcohol (see Footnote 4). Heat at reflux with a Calcium Chloride guard tube for 30 minutes. Allow the undissolved solids to settle (Ammonium Chloride) then decant the clear solution and cool quickly to precipitate out Methylamine HCI. Filter rapidly on the vacuum Buchner funnel and transfer crystals to a dessicator (see Footnote 3). Repeat the reflux-settle-cool-filter process four... [Pg.269]

Another difficulty in this reaction lies in the preparation of pure chloroacetaldehyde. The low yield observed is due to simultaneous formation of by-products (polyhalogenation). So vinylchloride was used as a starting material for this synthesis (449). A simpler method is to react chlorine with vinylchloride in aqueous solution and then to dehydrate the semihydrated chloroacetaldehyde by distillation through a column of calcium chloride heated to 70 to 90 C (451). [Pg.171]

Other patents (81,82) coveted the preparation of cellulose solutions using NMMO and speculated about their use as dialysis membranes, food casings (sausage skins), fibers, films, paper coatings, and nonwoven binders. NMMO emerged as the best of the amine oxides, and its commercial potential was demonstrated by American Enka (83,84). Others (85) have studied the cellulose-NMMO system in depth one paper indicates that further strength increases can be obtained by adding ammonium chloride or calcium chloride to the dope (86). [Pg.351]

Calcium carbonate can be prepared by the double decomposition of calcium chloride and sodium carbonate in aqueous solution. Its density and... [Pg.199]

Docusate Calcium. Dioctyl calcium sulfosuccinate [128-49-4] (calcium salt of l,4-bis(2-ethylhexyl)ester butanedioic acid) (11) is a white amorphous soHd having the characteristic odor of octyl alcohol. It is very slightly soluble in water, and very soluble in alcohol, polyethylene glycol 400, and com oil. It may be prepared directly from dioctyl sodium sulfo succinate dissolved in 2-propanol, by reaction with a methan olic solution of calcium chloride. [Pg.201]

Calcium thiosulfate has been prepared from calcium sulfite and sulfur at 30—40°C, or from boiling lime and sulfur in the presence of sulfur dioxide until a colorless solution is obtained. Alternatively, a concentrated solution of sodium thiosulfate is treated with calcium chloride the crystalline sodium chloride is removed at low temperature. Concentrated solutions of calcium thiosulfate are prepared from ammonium thiosulfate and lime the Hberated ammonium ion is recycled to the ammonium thiosulfate process (85). [Pg.32]


See other pages where Calcium chloride solution preparation is mentioned: [Pg.403]    [Pg.142]    [Pg.68]    [Pg.264]    [Pg.265]    [Pg.685]    [Pg.11]    [Pg.140]    [Pg.76]    [Pg.163]    [Pg.97]    [Pg.190]    [Pg.220]    [Pg.253]    [Pg.256]    [Pg.284]    [Pg.173]    [Pg.182]    [Pg.189]    [Pg.240]    [Pg.255]    [Pg.256]    [Pg.814]    [Pg.824]    [Pg.827]    [Pg.842]    [Pg.857]    [Pg.863]    [Pg.883]    [Pg.931]    [Pg.934]    [Pg.950]    [Pg.176]    [Pg.65]    [Pg.223]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Calcium Chloride Solution

Calcium chloride

Calcium chloride, preparation

Calcium preparation

Chloride solutions

Chlorides, preparation

Solution preparing

© 2024 chempedia.info