Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium chloride, preparation

Cannot be used for alcohols, phenols or amines, with all of which it combines. Not advisable for acidic liquids, as ordinary calcium chloride always contains some calcium hydroxide owing to partial hydrolysis during preparation. Usually used for alcohols (see p. 88). Cannot be used for acidic compounds, nor for esters, which it would hydrolyse. [Pg.24]

Fig 23(A) shows an assembly for boiling a liquid under reflux whilst adding another liquid at a rate which can be clearly seen cf. preparation of acetophenone, p. 253). The outlet A allows expansion of the vapour content, and can be fitted with a calcium chloride or soda-lime tube. The outlet A can also be used for collecting a gas evolved during the reaction cf, preparation of acetylene,... [Pg.44]

Pure Ether. Pure ether (entirely free in particular from water) is frequently required in the laboratory, and especially for the preparation and use of Grignard reagents. It is best prepared in quantity for classes by adding an ample quantity of granular calcium chloride to a Winchester bottle of technical ether, and allowing the mixture to stand for at least 24 hours, preferably with occasional shaking. The greater part of the water and... [Pg.82]

Run off the lower layer of bromide, dry it with calcium chloride (as in the above preparation of ethyl bromide) and finally distil the filtered bromide from a small flask, preferably through a short column. Collect the n-butyl bromide as a colourless liquid of b.p. 99-102°. Yield, 30 g. [Pg.103]

Lead formate separates from aqueous solution without water of crystallisation. It can therefore be used for the preparation of anhydrous formic acid. For this purpose, the powdered lead formate is placed in the inner tube of an ordinary jacketed cond ser, and there held loosely in position by plugs of glass-wool. The condenser is then clamped in an oblique position and the lower end fitted into a receiver closed with a calcium chloride tube. A current of dry hydrogen sulphide is passed down the inner tube of the condenser, whilst steam is passed through the jacket. The formic acid which is liberated... [Pg.114]

The benzene used in this preparation should be reasonably free from toluene therefore use a sample of benzene supplied by dealers as crystalUsable benzene, i.e.y one which crystallises readily when cooled in ice-water. It should preferably be dried over calcium chloride and, immediately before use, filtered through a fluted filter-paper. The pyridine should also preferably be dried over solid potassium hydroxide and redistilled. [Pg.175]

For this preparation, which must be performed in the fume-cupboard, assemble the apparatus shown in Fig. 67(A). C is a 150 ml. distilling-flask, to the neck of which is fitted a reflux single-surface water-condenser D, closed at the top E by a calcium chloride tube. The side-arm of C carries a cork F which fits the end E of the condenser for subsequent distillation. The side-arm of C is meanwhile plugged by a small rubber cork, or by a short length of glass rod. (Alternatively, use the ground-glass flask and condenser (Fig. 22 (a) and (c), p. 43), and... [Pg.240]

Refractionation of the low-boiling impurities gives a further quantity of the acetoacetate, but if the initial distillation has been carefully conducted, the amount recovered is less than i g., and the refractionation is not worth while. If possible, complete the preparation in one day. If this is not possible, it is best to allow the cold crude sodium derivative (before acidification) to stand overnight, the flask being closed by a cork carrying a calcium chloride tube the yield will now fall to about 38 g. Alternatively, the crude ester may be allowed to remain overnight in contact with the sodium sulphate, but in this case the yield will fall to about 30 g. [Pg.267]

The industrial process for preparing the reagent usually permits a little hydrolysis to occur, and the product may contain a little free calcium hydroxide or basic chloride. It cannot therefore be employed for drying acids or acidic liquids. Calcium chloride combines with alcohols, phenols, amines, amino-acids, amides, ketones, and some aldehydes and esters, and thus cannot be used with these classes of compounds. [Pg.140]

The chlorides of cycloaliphatic alcohols may be prepared by heating the alcohol with concentrated hydrochloric acid and anhydrous calcium chloride, for example —... [Pg.270]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

In a 250 ml. separatory funnel place 25 g. of anhydrous feri.-butyl alcohol (b.p. 82-83°, m.p. 25°) (1) and 85 ml. of concentrated hydrochloric acid (2) and shake the mixture from time to time during 20 minutes. After each shaking, loosen the stopper to relieve any internal pressure. Allow the mixture to stand for a few minutes until the layers have separated sharply draw off and discard the lower acid layer. Wash the halide with 20 ml. of 5 per cent, sodium bicarbonate solution and then with 20 ml. of water. Dry the preparation with 5 g. of anhydrous calcium chloride or anhydrous calcium, sulphate. Decant the dried liquid through a funnel supporting a fluted Alter paper or a small plug of cotton wool into a 100 ml. distilling flask, add 2-3 chips of porous porcelain, and distil. Collect the fraction boiling at 49-51°. The yield of feri.-butyl chloride is 28 g. [Pg.276]

Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

The allyl bromide (Section 111,35) should be dried over anhydrous calcium chloride and redistilled the fraction b.p. 69-72° is collected for use in this preparation. [Pg.301]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Boil a mixture of 10 g. (10 ml.) of o-toluidine and 38 g. (35 ml.) of acetic anhydride in a 75 or 100 ml. Claisen flask fitted with a reflux condenser (Fig. Ill, 28, 1, but with trap replaced by a calcium chloride or cotton wool guard tube) for 1 hour. Arrange the flask for distillation under reduced pressure (compare Fig. II, 20, 1) and distil acetic acid and the excess of acetic anhydride pass over first, followed by the diacetyl derivative at 152-153°/20 mm, some mono-acetyl-o-toluidine (1-2 g.) remains in the flask. The yield of diacetyl-o-toluidine is 14-15 g, it is a colourless, somewhat unstable hquid, which slowly sohdifies to yield crystals, m.p. 18°, To prepare the (mono-) acetyl-o-toluidine, warm a mixture of 5 g. [Pg.578]

Chlorobenzene. Prepare a solution of phenyldiazonium chloride from 31 g. (30 -5 ml.) of aniUne, 85 ml. of concentrated hydrochloric acid, 85 ml, of water, and a solution of 24 g. of sodium nitrite in 50 ml. of water (for experimental details, see Section IV,60). Prepare cuprous chloride from 105 g. of crystallised copper sulphate (Section 11,50,1), and dissolve it in 170 ml. of concentrated hydrochloric acid. Add the cold phenyl diazonium chloride solution with shaking or stirring to the cold cuprous chloride solution allow the mixture to warm up to room temperature. Follow the experimental details given above for p-chlorotoluene. Wash the chlorobenzene separated from the steam distillate with 40 ml. of 10 per cent, sodium hydroxide solution (to remove phenol), then with water, dry with anhydrous calcium chloride or magnesium sulphate, and distil. Collect the chlorobenzene (a colourless liquid) at 131-133° (mainly 133°), The yield is 29 g. [Pg.601]

To prepare crystalline monoperphthalic acid, place the thoroughly dry ethereal solution (4) in a distilling flask equipped with a capillary tube connected with a calcium chloride or cotton wool drying tube, and attach the flask to a water pump. Evaporate the ether without the application of heat (ice will form on the flask) to a thin syrup (about 150 ml.). Transfer the syrup to an evaporating dish, rinse the flask with a little anhydrous ether, and add the rinsings to the syrup. Evaporate the remainder of the ether in a vacuum desiccator over concentrated sulphuric acid about 30 g. of monoperphthalic acid, m.p. 110° (decomp.), is obtained. [Pg.810]

Prepare acetophenonephenylhydrazone by warming a mixture of 20 g. of acetophenone (Section IV, 136) and 18 g. of phenylhydrazine on a water bath for 1 hour. Dissolve the hot mixture in 40 ml. of rectihed spirit, and shake or stir to induce crystallisation. Cool the mixture in ice, filter and wash with 12 ml. of rectified spirit. Dry in a vacuum desiccator over anhydrous calcium chloride for at least half an hour. The yield of phenylhydrazone, m.p. 105-106 , is 28 g. [Pg.852]

Preparation of palladium - calcium carbonate catalyst. Prepare 60 g. of precipitated calcium carbonate by mixing hot solutions of the appropriate quantities of A.R. calcium chloride and A.R. sodium carbonate. Suspend the calcium carbonate in water and add a solution containing 1 g. of palladium chloride. Warm the suspension until all the palladium is precipitated as the hydroxide upon the calcium carbonate, i.e., until the supernatant liquid is colourless. Wash several times with... [Pg.891]


See other pages where Calcium chloride, preparation is mentioned: [Pg.76]    [Pg.163]    [Pg.122]    [Pg.97]    [Pg.102]    [Pg.144]    [Pg.190]    [Pg.220]    [Pg.253]    [Pg.256]    [Pg.266]    [Pg.284]    [Pg.289]    [Pg.166]    [Pg.173]    [Pg.182]    [Pg.189]    [Pg.189]    [Pg.240]    [Pg.255]    [Pg.256]    [Pg.792]    [Pg.814]    [Pg.824]    [Pg.827]    [Pg.842]    [Pg.857]    [Pg.863]    [Pg.883]   


SEARCH



Calcium chloride

Calcium chloride, preparation solution

Calcium preparation

Chlorides, preparation

Preparation of Calcium Chloride Hydrate

© 2024 chempedia.info