Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation from formate

In situations where a low concentration of suspended solids needs to be separated from a liquid, then cross-flow filtration can be used. The most common design uses a porous tube. The suspension is passed through the tube at high velocity and is concentrated as the liquid flows through the porous medium. The turbulent flow prevents the formation of a filter cake, and the solids are removed as a more concentrated slurry. [Pg.74]

The JCAMP-DX file format is split into the sections CORE and NOTES with the intention of keeping less important data separated from the essential content. The CORE itself contains CORE HEADER and CORE DATA. NOTES are just between HEADER and DATA (see Figure 4-4 for an example). [Pg.210]

Lead formate separates from aqueous solution without water of crystallisation. It can therefore be used for the preparation of anhydrous formic acid. For this purpose, the powdered lead formate is placed in the inner tube of an ordinary jacketed cond ser, and there held loosely in position by plugs of glass-wool. The condenser is then clamped in an oblique position and the lower end fitted into a receiver closed with a calcium chloride tube. A current of dry hydrogen sulphide is passed down the inner tube of the condenser, whilst steam is passed through the jacket. The formic acid which is liberated... [Pg.114]

Phenylurea Derizatives. These are prepared precisely as those from primary amines, except that the toluene-/)-sulphonyl and benzene sulphonyl derivatives are insoluble in aqueous sodium hydroxide and therefore separate on formation. (M.ps., p. 552.)... [Pg.377]

A typical flow diagram for pentaerythritol production is shown in Figure 2. The main concern in mixing is to avoid loss of temperature control in this exothermic reaction, which can lead to excessive by-product formation and/or reduced yields of pentaerythritol (55,58,59). The reaction time depends on the reaction temperature and may vary from about 0.5 to 4 h at final temperatures of about 65 and 35°C, respectively. The reactor product, neutralized with acetic or formic acid, is then stripped of excess formaldehyde and water to produce a highly concentrated solution of pentaerythritol reaction products. This is then cooled under carefully controlled crystallization conditions so that the crystals can be readily separated from the Hquors by subsequent filtration. [Pg.465]

The exact order of the production steps may vary widely in addition, some parts of the process may also vary. Metal formate removal may occur immediately after the reaction (62) following formaldehyde and water removal, or by separation from the mother Hquor of the first-stage crystallization (63). The metal formate may be recovered to hydroxide and/or formic acid by ion exchange or used as is for deicing or other commercial appHcations. Similarly, crystallization may include sophisticated techniques such as multistage fractional crystallization, which allows a wider choice of composition of the final product(s) (64,65). [Pg.465]

In module II (Fig. lb) a crystallization vessel, jacketed and coimected to cooling water, is added. Thus the salt formation step, which may require heating, is separated from the crystallization (qv), which is completed upon cooling. Using module II a substantially iacreased production capacity can be achieved at only a minor additional capital investment. [Pg.438]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

The methanol carbonylation is performed ia the presence of a basic catalyst such as sodium methoxide and the product isolated by distillation. In one continuous commercial process (6) the methyl formate and dimethylamine react at 350 kPa (3.46 atm) and from 110 to 120°C to effect a conversion of about 90%. The reaction mixture is then fed to a reactor—stripper operating at about 275 kPa (2.7 atm), where the reaction is completed and DMF and methanol are separated from the lighter by-products. The cmde material is then purified ia a separate distillation column operating at atmospheric pressure. [Pg.513]

The metals are impregnated together or separately from soluble species, eg, Na2PdCl4 and HAuCl or acetates (159), and are fixed by drying or precipitation prior to reduction. In some instances sodium or potassium acetate is added as a promoter (160). The reaction of acetic acid, ethylene, and oxygen over these catalysts at ca 180°C and 618—791 kPa (75—100 psig) results in the formation of vinyl acetate with 92—94% selectivity the only other... [Pg.385]

As of this writing, the process has not been commercialized, but apparendy the alcohol can be separated from its propylene oxide coproduct process to maintain an economically competitive position. The formation of organic hydroperoxides is a concern, as it was in the Shell process. [Pg.477]

Most modem RJAs utilize a competitive assay format (Fig. 2) in which radiolabled antigen, Ag, competes with unlabeled antigen, Ag, in a sample for binding to the antibody. Ah. The free antigens are then separated from the antigen—antibody complexes, and the amount of radioactivity in the... [Pg.23]

Condensable Hquids also are recovered from high pressure gas reservoirs by retrograde condensation. In this process, the high pressure fluid from the reservoir produces a Hquid phase on isothermal expansion. As the pressure decreases isotherm ally the quantity of the Hquid phase increases to a maximum and then decreases to disappearance. In the production of natural gas Hquids from these high pressure wells, the well fluids are expanded to produce the optimum amount of Hquid. The Hquid phase then is separated from the gas for further processing. The gas phase is used as a raw material for one of the other recovery processes, as fuel, or is recompressed and returned to the formation. [Pg.184]

The key difference between the brine process and seawater process is the precipitation step. In the latter process (Fig. 6) the seawater is first softened by a dding small amounts of lime to remove bicarbonate and sulfates, present as MgSO. Bicarbonate must be removed prior to the precipitation step to prevent formation of insoluble calcium carbonate. Removal of sulfates prevents formation of gypsum, CaS02 2H20. Once formed, calcium carbonate and gypsum cannot be separated from the product. [Pg.347]

The oxidant preheater, positioned in the convective section and designed to preheat the oxygen-enriched air for the MHD combustor to 922 K, is located after the finishing superheat and reheat sections. Seed is removed from the stack gas by electrostatic precipitation before the gas is emitted to the atmosphere. The recovered seed is recycled by use of the formate process. Alkali carbonates ate separated from potassium sulfate before conversion of potassium sulfate to potassium formate. Sodium carbonate and potassium carbonate are further separated to avoid buildup of sodium in the system by recycling of seed. The slag and fly-ash removed from the HRSR system is assumed to contain 15—17% of potassium as K2O, dissolved in ash and not recoverable. [Pg.425]

Tetrapotassium peroxodiphosphate is produced by electrolysis of a solution containing dipotassium phosphate and potassium fluoride (52). Alkalinity favors the formation of the P20 g anion, whereas the PO anion is produced in larger yields in acidic solution. It is therefore possible to obtain an 80% yield of K4P20g by choosing the proper conditions. The tetrapotassium peroxodiphosphate can be crysta11i2ed from solution by evaporation of water to form a slurry. The crystals can be separated from the slurry and dried. The material is noncorrosive and cannot be catalyticaHy decomposed by iron ions. [Pg.94]

Benzene is a natural component of petroleum, but the amount of benzene present ia most cmde oils is small, often less than 1.0% by weight (34). Therefore the recovery of benzene from cmde oil is uneconomical and was not attempted on a commercial scale until 1941. To add further compHcations, benzene cannot be separated from cmde oil by simple distillation because of azeotrope formation with various other hydrocarbons. Recovery is more economical if the petroleum fraction is subjected to a thermal or catalytic process that iacreases the concentration of benzene. [Pg.40]

Esters are named by replacing the ending -ic acid with the suffix -ate. The alcohol portion of the ester is named by replacing the -ane ending of the parent hydrocarbon name with the suffix -yl. The alkyl radical name of an ester is separated from the carboxylate name, eg, methyl formate for HCOOCH. Amides are named by changing the ending -oic acid to -amide for either systematic or common names, eg, hexanamide and acetamide. [Pg.82]


See other pages where Separation from formate is mentioned: [Pg.71]    [Pg.703]    [Pg.18]    [Pg.962]    [Pg.1]    [Pg.69]    [Pg.210]    [Pg.65]    [Pg.207]    [Pg.229]    [Pg.417]    [Pg.300]    [Pg.98]    [Pg.180]    [Pg.64]    [Pg.509]    [Pg.248]    [Pg.139]    [Pg.238]    [Pg.265]    [Pg.384]    [Pg.176]    [Pg.239]    [Pg.524]    [Pg.481]    [Pg.483]    [Pg.373]    [Pg.410]    [Pg.183]    [Pg.385]    [Pg.386]    [Pg.345]   


SEARCH



© 2024 chempedia.info