Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cadmium materials

Many activities are going on in order to find substitutes for cadmium. When this endeavor has been completely successful and there is no need for cadmium, still 15 000-20000 tonnes will be produced annually in connection with zinc manufacturing. Will this quantity be cast into concrete for terminal storage like burnt-out nuclear fuel Or will the large difference in toxicity between soluble cadmium compounds and cadmium materials with low solubility, and because of that less toxicity, justify a certain cadmium utilization even in the future ... [Pg.787]

The difference between sintered plate cells and pocket-type cells with regard to memory may be connected with the fact that pocket cadmium active material contains an addition of finely divided iron compounds. This addition is made to prolong life by preventing recrystallization and agglomeration of cadmium particles. It seems probable that the iron addition will not only prevent the normal tendency for crystal growth of the cadmium material, but will also eliminate the particle size redistribution that causes the memory effect. [Pg.239]

Medicated Dandruff Shampoos. Dandmff is a scalp condition characterized by the production of excessive cellular material (18). A number of shampoos have been marketed which are designed to control and alleviate this condition, and many additives have been included in shampoo compositions to classify them as treatment products for dandmff. These additives include antimicrobial additives, eg, quaternary ammonium salts keratolytic agents, eg, saUcychc acid and sulfur heavy metals, eg, cadmium sulfide coal tar resorcinol and many others. More recent (ca 1993) systems use selenium sulfide [7488-56-4] or zinc pyrithione [13463-41 -7] as active antidandmff shampoo additives. Both of these additives are classified as dmgs, but can be found in over-the-counter products. A stronger version, incorporating the use of higher levels of selenium sulfide in a shampoo, is available but requires a prescription for purchase. [Pg.451]

The State of New Jersey has passed a law restricting the sale and disposal of batteries (qv) containing mercury, requiring manufacturers to reduce the mercury content of each battery to 1 ppm by weight by 1995, and to estabhsh a collection program for spent batteries (14). Another New Jersey law bans the sale of products having cadmium, mercury, or other toxic materials in the packaging (14) (see Cadmiumand cadmium alloys Cadmium compounds Mercury compounds). [Pg.108]

Batteries. Many batteries intended for household use contain mercury or mercury compounds. In the form of red mercuric oxide [21908-53-2] mercury is the cathode material in the mercury—cadmium, mercury—indium—bismuth, and mercury—zinc batteries. In all other mercury batteries, the mercury is amalgamated with the zinc [7440-66-6] anode to deter corrosion and inhibit hydrogen build-up that can cause cell mpture and fire. Discarded batteries represent a primary source of mercury for release into the environment. This industry has been under intense pressure to reduce the amounts of mercury in batteries. Although battery sales have increased greatly, the battery industry has aimounced that reduction in mercury content of batteries has been made and further reductions are expected (3). In fact, by 1992, the battery industry had lowered the mercury content of batteries to 0.025 wt % (3). Use of mercury in film pack batteries for instant cameras was reportedly discontinued in 1988 (3). [Pg.109]

A third group includes silver—nickel, silver—cadmium oxide, and silver—graphite combinations. These materials are characterized by low contact resistance, some resistance to arc erosion, and excellent non sticking characteristics. They can be considered intermediate in overall properties between silver alloys and silver or copper—refractory compositions. Silver—cadmium oxide compositions, the most popular of this class, have wide appHcation in aircraft relays, motor controllers, and line starters and controls. [Pg.190]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

Heterogeneous Photocatalysis. Heterogeneous photocatalysis is a technology based on the irradiation of a semiconductor (SC) photocatalyst, for example, titanium dioxide [13463-67-7] Ti02, zinc oxide [1314-13-2] ZnO, or cadmium sulfide [1306-23-6] CdS. Semiconductor materials have electrical conductivity properties between those of metals and insulators, and have narrow energy gaps (band gap) between the filled valence band and the conduction band (see Electronic materials Semiconductors). [Pg.400]

Four different types of junctions can be used to separate the charge carriers in solar cebs (/) a homojunction joins semiconductor materials of the same substance, eg, the homojunction of a p—n sibcon solar ceb separates two oppositely doped layers of sibcon 2) a heterojunction is formed between two dissimbar semiconductor substances, eg, copper sulfide, Cu S, and cadmium sulfide, CdS, in Cu S—CdS solar cebs (J) a Schottky junction is formed when a metal and semiconductor material are joined and (4) in a metal—insulator—semiconductor junction (MIS), a thin insulator layer, generaby less than 0.003-p.m thick, is sandwiched between a metal and semiconductor material. [Pg.467]

Copper Sulfide—Cadmium Sulfide. This thin-film solar cell was used in early aerospace experiments dating back to 1955. The Cu S band gap is ca 1.2 eV. Various methods of fabricating thin-film solar cells from Cu S/CdS materials exist. The most common method is based on a simple process of serially overcoating a metal substrate, eg, copper (16). The substrate first is coated with zinc which serves as an ohmic contact between the copper and a 30-p.m thick, vapor-deposited layer of polycrystaUine CdS. A layer is then formed on the CdS base by dipping the unit into hot cuprous chloride, followed by heat-treating it in air. A heterojunction then exists between the CdS and Cu S layers. [Pg.472]

StiU another method used to produce PV cells is provided by thin-fiLm technologies. Thin films ate made by depositing semiconductor materials on a sohd substrate such as glass or metal sheet. Among the wide variety of thin-fiLm materials under development ate amorphous siUcon, polycrystaUine sUicon, copper indium diselenide, and cadmium teUuride. Additionally, development of multijunction thin-film PV cells is being explored. These cells use multiple layers of thin-film sUicon alloys or other semiconductors tailored to respond to specific portions of the light spectmm. [Pg.104]


See other pages where Cadmium materials is mentioned: [Pg.396]    [Pg.396]    [Pg.40]    [Pg.239]    [Pg.396]    [Pg.396]    [Pg.40]    [Pg.239]    [Pg.314]    [Pg.2902]    [Pg.2962]    [Pg.146]    [Pg.191]    [Pg.195]    [Pg.56]    [Pg.365]    [Pg.132]    [Pg.250]    [Pg.50]    [Pg.129]    [Pg.130]    [Pg.139]    [Pg.187]    [Pg.223]    [Pg.242]    [Pg.432]    [Pg.432]    [Pg.433]    [Pg.471]    [Pg.474]    [Pg.10]    [Pg.17]    [Pg.554]    [Pg.556]    [Pg.562]    [Pg.334]    [Pg.336]    [Pg.86]    [Pg.235]    [Pg.246]    [Pg.65]    [Pg.513]    [Pg.62]    [Pg.270]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



© 2024 chempedia.info