Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Body Extracellular

The chemical part of the adhesion process dictates that in designing a surface for attachment of cells, one must seek to stimulate an active interaction between the surface and the scaffold. The surface properties of the scaffold are our main concerns. The surface should mimic the natural support structures on the human body. Extracellular matrix (ECM) provides cells with an interactive structure onto which they can adhere. This process (referred to as integrin-mediated binding) is a basis of cell growth. [Pg.154]

The sodium content of the body extracellular fluids of marine invertebrates from the coelenterate through the arthropod phyla is approximately that of seawater. In freshwater and terrestrial invertebrates, the sodium of body fluids varies over a wide range and there is considerable variation among vertebrates. There are both fish and crustaceans so highly adaptable that they are able to live in either fresh or salt water. [Pg.1363]

The glial scar increases the distance between the electrode and neuron cell bodies. The amplitude of extracellular signals decreases rapidly with increasing distance from the cell body. Extracellular signal amplitude is often in the neighborhood of 50 p, V, although strong spikes can be around 250 p V. Experimental data have shown that extracellular action potentials cannot be differentiated from noise for electrodes further than 140 pm from the cell body [113]. [Pg.179]

Active Transport. Maintenance of the appropriate concentrations of K" and Na" in the intra- and extracellular fluids involves active transport, ie, a process requiring energy (53). Sodium ion in the extracellular fluid (0.136—0.145 AfNa" ) diffuses passively and continuously into the intracellular fluid (<0.01 M Na" ) and must be removed. This sodium ion is pumped from the intracellular to the extracellular fluid, while K" is pumped from the extracellular (ca 0.004 M K" ) to the intracellular fluid (ca 0.14 M K" ) (53—55). The energy for these processes is provided by hydrolysis of adenosine triphosphate (ATP) and requires the enzyme Na" -K" ATPase, a membrane-bound enzyme which is widely distributed in the body. In some cells, eg, brain and kidney, 60—70 wt % of the ATP is used to maintain the required Na" -K" distribution. [Pg.380]

AletabolicFunctions. The chlorides are essential in the homeostatic processes maintaining fluid volume, osmotic pressure, and acid—base equihbria (11). Most chloride is present in body fluids a Htde is in bone salts. Chloride is the principal anion accompanying Na" in the extracellular fluid. Less than 15 wt % of the CF is associated with K" in the intracellular fluid. Chloride passively and freely diffuses between intra- and extracellular fluids through the cell membrane. If chloride diffuses freely, but most CF remains in the extracellular fluid, it follows that there is some restriction on the diffusion of phosphate. As of this writing (ca 1994), the nature of this restriction has not been conclusively estabUshed. There may be a transport device (60), or cell membranes may not be very permeable to phosphate ions minimising the loss of HPO from intracellular fluid (61). [Pg.380]

Three hormones regulate turnover of calcium in the body (22). 1,25-Dihydroxycholecalciferol is a steroid derivative made by the combined action of the skin, Hver, and kidneys, or furnished by dietary factors with vitamin D activity. The apparent action of this compound is to promote the transcription of genes for proteins that faciUtate transport of calcium and phosphate ions through the plasma membrane. Parathormone (PTH) is a polypeptide hormone secreted by the parathyroid gland, in response to a fall in extracellular Ca(Il). It acts on bones and kidneys in concert with 1,25-dihydroxycholecalciferol to stimulate resorption of bone and reabsorption of calcium from the glomerular filtrate. Calcitonin, the third hormone, is a polypeptide secreted by the thyroid gland in response to a rise in blood Ca(Il) concentration. Its production leads to an increase in bone deposition, increased loss of calcium and phosphate in the urine, and inhibition of the synthesis of 1,25-dihydroxycholecalciferol. [Pg.409]

Diuretics are needed to return to normal the expanded extracellular volume that other antihypertensive agents produce, such as fluid retention and blood volume expansion, via compensatory mechanisms of the body. The loss of efficacy of antihypertensive agents can be restored if a diuretic is used concomitandy. In the treatment of hypertension, high ceiling or loop diuretics, such as furosemide, ethacrynic acid, and bumetanide, are no more efficacious than the thiazide-type of diuretics. In fact, these agents cause more side effects, such as dehydration, metaboHc alkalosis, etc, and therefore, should not be used except in situations where rapid elimination of duid volume is cleady indicated. [Pg.142]

The integrity of mammalian kidneys is vital to body homeostasis, because the kidneys play the principal role in the excretion of metabolic wastes and the regulation of extracellular fluid volume, electrolyte balance, and acid-base... [Pg.301]

A surgical implant is constantly bathed in extracellular tissue fluid. Basically water, this fluid contains electrolytes, complex compounds, oxygen and carbon dioxide. Electrolytes present in the largest amounts are sodium (Na ) and chloride (Cl ) ions. Most of the fluids existing in the body (such as blood, plasma and lymph) have a chloride content (and pH) somewhat similar to that of sea water (about 5 to 20g/l and pH about 8) . [Pg.472]

A 0-9% salt solution is considered to be isotonic with blood. Other electrolytes present include bicarbonate ions (HCOj ) and small amounts of potassium, calcium, magnesium, phosphate, sulphate and organic acid ions. Included among the complex compounds and present in smaller amounts are phospholipids, cholesterols, natural fats, proteins, glucose and amino acids. Under normal conditions the extracellular body fluid is slightly alkaline with a pH of 7-4. ... [Pg.472]

Guyton, A. C., Chapter 33, Partition of the Body Fluids Osmotic Equilibria between Extracellular and Intracellular Fluids , in Textbook of Medical Physiology (5th Edition), (Ed.) Guyton A. C., i,1A-Ayi, W. B. Saunders, Philadelphia (1976)... [Pg.481]

Extracellular adenosine acts through a class of G protein-coupled receptors (GPCRs), defined across mammalian species as Ab A2a, A2B, and A3ARs (adenosine receptors). Adenosine has a cytoprotective role in the body, both in the periphery and in the central nervous system. Following binding of adenosine, or another naturally occurring agonist, the receptor... [Pg.19]

Diuretics promote the urinary excretion of sodium and water by inhibiting the absorption of filtered fluid across the renal tubular epithelium. The ensuing reduction in Na reabsorption reduces the Na content of the body, the critical determinant of extracellular and plasma fluid volumes. Thus, the use of diuretics is primarily indicated in the treatment of edematous diseases and of arterial hypertension. [Pg.429]

A substrate is a substance that is the basic component of an organism. Protein substrates are amino acids, which are essential to life Protein substrates are amino acid preparations that act to promote the production of proteins (anabolism). Amino acids are necessary to promote synthesis of structural components, reduce the rate of protein breakdown (catabolism), promote wound healing, and act as buffers in the extracellular and intracellular fluids. Crystalline amino acid preparations are hypertonic solutions of balanced essential and nonessential amino acid concentrations that provide substrates for protein synthesis or act to conserve existing body protein. [Pg.634]

Fujikawa, S. Miura, K. (1986). Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fhiit-bodies of basidiomycetes (Lyophyllum ulmarium [Fr.J KOhner). Cryobiol. 23,371-382. [Pg.381]

The first elastomeric protein is elastin, this structural protein is one of the main components of the extracellular matrix, which provides stmctural integrity to the tissues and organs of the body. This highly crosslinked and therefore insoluble protein is the essential element of elastic fibers, which induce elasticity to tissue of lung, skin, and arteries. In these fibers, elastin forms the internal core, which is interspersed with microfibrils [1,2]. Not only this biopolymer but also its precursor material, tropoelastin, have inspired materials scientists for many years. The most interesting characteristic of the precursor is its ability to self-assemble under physiological conditions, thereby demonstrating a lower critical solution temperature (LCST) behavior. This specific property has led to the development of a new class of synthetic polypeptides that mimic elastin in its composition and are therefore also known as elastin-like polypeptides (ELPs). [Pg.72]

This compartment contains about one-third of total body water and is distributed between the plasma and interstitial compartments. The extracellular fluid is a delivery system. It brings to the cells nutrients (eg, glucose, fatty acids, amino acids), oxygen, various ions and trace minerals, and a variety of regulatory molecules (hormones) that coordinate the functions of widely separated cells. Extracellular fluid removes COj, waste... [Pg.415]


See other pages where Body Extracellular is mentioned: [Pg.227]    [Pg.72]    [Pg.21]    [Pg.21]    [Pg.227]    [Pg.72]    [Pg.21]    [Pg.21]    [Pg.269]    [Pg.185]    [Pg.202]    [Pg.202]    [Pg.236]    [Pg.307]    [Pg.20]    [Pg.74]    [Pg.301]    [Pg.546]    [Pg.705]    [Pg.823]    [Pg.1326]    [Pg.80]    [Pg.82]    [Pg.163]    [Pg.272]    [Pg.402]    [Pg.463]    [Pg.358]    [Pg.107]    [Pg.173]    [Pg.2]    [Pg.236]    [Pg.532]    [Pg.77]    [Pg.80]    [Pg.412]    [Pg.416]    [Pg.10]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



© 2024 chempedia.info