Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bisulfate

But that is not the case. What the Korean lab found out was that when this procedure is performed, the OH stabilizes on the alpha carbon. That is the carbon right next to the phenyl ring. If one has any use for it as is then that is fine. But what is most preferable is to reduce the OH to get the propenylbenzene (say isoelemicin for our example). Using the simple potassium bisulfate reduction recipe, one can get rid of the OH with no problems at all. [Pg.51]

For years chemists have been using sodium bisulfite (that is BISULFITE not BISULFATE) to actually crystallize a ketone out of solution in order to separate it. As it so happens, our happy little MD-P2P is a ketone. And when an oil mixture containing it is mixed with a saturated solution of sodium bisulfite (NaHSOs) the MD-P2P crystallizes out as a bisulfite addition product . It can then be easily separated by filtration. Here s how it goes... [Pg.57]

The soiution is aliowed to cool and the crystals of the P2P-bisulfite addition compound are then separated by vacuum filtration, washed with a little clean dH20 then washed with a couple hundred mLs of ether, DCM or benzene. The filter cake of MD-P2P-bisulfate is processed by scraping the crystals into a flask and then 300mL of either 20% sodium carbonate solution or 10% HCi soiution are added (HCI works best). The soiution is stirred for another 30 minutes during which time the MD-P2P-bisulfite complex will be busted up and the P2P will return to its happy oil form. The P2P is then taken up with ether, dried and removed of the solvent to give pure MD-P2P. Whaddya think of that ... [Pg.58]

Well the gospel according to Sodium Bisulfate confirms it is a ketone. Whether that s all it is I ll know tomorrow."... [Pg.93]

At room temperature, hafnium dioxide is slowly dissolved by hydrofluoric acid. At elevated temperatures, hafnium dioxide reacts with concentrated sulfuric acid or alkaU bisulfates to form various sulfates, with carbon tetrachloride or with chlorine in the presence of carbon to form hafnium tetrachloride, with alkaline fluorosiUcates to form alkaU fluorohafnates, with alkaUes to form alkaline hafnates, and with carbon above 1500°C to form hafnium carbide. [Pg.445]

Sulfite is oxidized rapidly (/t = 1 X 10 ) to sulfate by ozone (39). Bisulfite ion and sulfurous acid also are oxidized rapidly (to bisulfate and sulfuric acid) with k values of 3.2 X 10 and 2 X 10 , lespectively. [Pg.492]

Plants can also be pests that need to be controlled, particulady noxious weeds infesting food crops. Prior to 1900, inorganic compounds such as sulfuric acid, copper nitrate, sodium nitrate, ammonium sulfate, and potassium salts were used to selectively control mustards and other broadleaved weeds in cereal grains. By the early 1900s, Kainite and calcium cyanamid were also used in monocotyledenous crops, as well as iron sulfate, copper sulfate, and sodium arsenate. Prom 1915 to 1925, acid arsenical sprays, carbon bisulfate, sodium chlorate, and others were introduced for weed control use. Total or nonselective herbicides kill all vegetation, whereas selective compounds control weeds without adversely affecting the growth of the crop (see Herbicides). [Pg.141]

Ammonium sulfate [7783-20-2], (NH 2 U4, is a white, soluble, crystalline salt having a formula wt of 132.14. The crystals have a rhombic stmcture d is 1.769. An important factor in the crystallization of ammonium sulfate is the sensitivity of its crystal habit and size to the presence of other components in the crystallizing solution. If heated in a closed system ammonium sulfate melts at 513 2° C (14) if heated in an open system, the salt begins to decompose at 100°C, giving ammonia and ammonium bisulfate [7803-63-6], NH HSO, which melts at 146.9°C. Above 300°C, decomposition becomes more extensive giving sulfur dioxide, sulfur trioxide, water, and nitrogen, in addition to ammonia. [Pg.367]

Sodium bisulfate, NaHSO, is mildly acidic. Appropriate precautions should be taken when using it. [Pg.207]

Sodium bisulfate, NaHSO, is a convenient mild acid and is safe for uses as a household toilet-bowl cleaner, automobile-radiator cleaner, and for swimming pool pH adjustment. It is used for metal pickling, as a dye-reducing agent, for soil disinfecting, and as a promoter in hardening certain types of cement. [Pg.207]

Analytical Methods. A classical and stiU widely employed analytical method is iodimetric titration. This is suitable for determination of sodium sulfite, for example, in boiler water. Standard potassium iodate—potassium iodide solution is commonly used as the titrant with a starch or starch-substitute indicator. Sodium bisulfite occurring as an impurity in sodium sulfite can be determined by addition of hydrogen peroxide to oxidize the bisulfite to bisulfate, followed by titration with standard sodium hydroxide (279). [Pg.149]

The oxidation of teUurium(IV) by permanganate as an analytical method has been studied in some detail (26). The sample is dissolved in 1 1 nitric-sulfuric acid mixture addition of potassium bisulfate and repeated fuming with sulfuric acid volatilises the selenium. The tellurite is dissolved in 10 vol % sulfuric acid, followed by threefold dilution with water and titration with potassium permanganate ... [Pg.388]

The most important of these is the diboride, TiB2, which has a hexagonal stmeture and lattice parameters of a = 302.8 pm and c = 322.8 pm. Titanium diboride is a gray crystalline soUd. It is not attacked by cold concentrated hydrochloric or sulfuric acids, but dissolves slowly at boiling temperatures. It dissolves mote readily in nitric acid/hydrogen peroxide or nitric acid/sulfuric acid mixtures. It also decomposes upon fusion with alkaU hydroxides, carbonates, or bisulfates. [Pg.117]

The pH is measured colorimetricaHy with phenol red indicator. High FAC causes lower pH rea dings due to bleaching of the indicator and resultant HCl formation. The pH of pool water is readily controlled with inexpensive chemicals. Hydrochloric acid solution or sodium bisulfate lower it, whereas sodium carbonate raises it. Since acid addition neutralizes a portion of the alkalinity, this must be replenished if the alkalinity drops below the minimum. By contrast, pH adjustment with carbon dioxide does not affect alkalinity. [Pg.299]

Sodium bicarbonate is generally added to increase alkalinity and muriatic acid (HCl) or sodium bisulfate (NaHSO ) to reduce it. In general, with acidic sanitizers such as chlorine gas or trichloroisocyanuric acid, ideal total alkalinity should be in the 100—120 ppm range, whereas, with alkaline products such as calcium, lithium, or sodium hypochlorite, a lower ideal total alkalinity of 80—100 ppm is recommended (14). Alkalinity is deterrnined by titration with standard sulfuric acid using a mixed bromcresol green—methyl red indicator after dechlorination of the sample with thiosulfate. Dechlorination with thiosulfate causes higher readings due to formation of hydroxyl ion (32) ... [Pg.300]

Wa.terBa.la.nce Chemicals. Water balance chemicals include muriatic acid, sodium bisulfate, and soda ash for pH control, sodium bicarbonate for alkalinity adjustment, and calcium chloride for hardness adjustment. A recent development is use of buffering agents for pH control. One of these products, sodium tetraborate, hydrolyzes to boric acid and a small amount of orthoborate (50) which provides significantly less buffering than carbonate and cyanurate alkalinity in the recommended pool pH range of 7.2—7.8 even at 100 ppm. [Pg.301]

Here the values of a are the activities of the designated ions in solution, and and are the equiHbrium constants for the dissociation reactions. is infinity because dissociation to hydrogen and bisulfate ions is essentially complete. The best value for is probably 0.0102 (17). Thus sulfuric acid contains a mixture of hydrogen, bisulfate, and sulfate ions where the ratios of these ions vary with concentration and temperature. [Pg.572]

To adjust the activities of sulfuric acid to the convention which assumes that the acid dissociates only partiaUy into hydrogen and bisulfate ions, the... [Pg.572]

Methyl Methacrylate and Methacryhc Acid. The traditional production of methyl methacrylate [80-62-6] and methacryhc acid [79-41-4] involves the reaction of acetone with HCN and subsequent conversion to methyl ester and by-product ammonium bisulfate. Older plants in the United States with capacities in the range of 380,000 t/yr stUl use this process. [Pg.373]

The handling of toxic materials and disposal of ammonium bisulfate have led to the development of alternative methods to produce this acid and the methyl ester. There are two technologies for production from isobutylene now available ammoxidation to methyl methacrylate (the Sohio process), which is then solvolyzed, similar to acetone cyanohydrin, to methyl methacrylate and direct oxidation of isobutylene in two stages via methacrolein [78-85-3] to methacryhc acid, which is then esterified (125). Since direct oxidation avoids the need for HCN and NH, and thus toxic wastes, all new plants have elected to use this technology. Two plants, Oxirane and Rohm and Haas (126), came on-stream in the early 1980s. The Oxirane plant uses the coproduct tert-huty alcohol direcdy rather than dehydrating it first to isobutylene (see Methacrylic acid). [Pg.373]

The oxime is converted to caprolactam by Beckmann rearrangement neutralization with ammonia gives ca 1.8 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. A no-sulfate, extraction process has been described, but incineration of the ammonium bisulfate recovers only sulfur values and it is not practiced commercially (14). [Pg.430]

Sulfur mustard reacts rapidly with chlorine or with bleach, and this reaction is a suitable means of decontamination. Nitrogen mustards, however, chlorinate extremely slowly thus chlorination is not suitable for their decontamination. The formation of water-soluble salts, such as by neutralization with sodium bisulfate, is the usual method for nitrogen mustard removal from contaminated surfaces. The mustard salts are much less vesicant than the corresponding free bases. [Pg.398]

The hydrolysis equilibria for H2Cr04 given in Table 3 are only valid in HNO or HCIO solutions. Other acids yield complexes such as those shown for chloride and bisulfate ions. The exact composition of chromate(VI) anion(s) present in aqueous solution is a function of both pH and hexavalent chromium concentration (68). However, at pH values above 8, virtually all the Cr(VI) is present as the CrO anion. When the pH is between 2 and 6, an equilibrium mixture of HCrO and Ci2 is present when the pH is below 1, the principal species is H2Cr04 (68,69). At very high Cr(VI) concentrations... [Pg.136]

Traditionally, sodium dichromate dihydrate is mixed with 66° Bh (specific gravity = 1.84) sulfuric acid in a heavy-walled cast-iron or steel reactor. The mixture is heated externally, and the reactor is provided with a sweep agitator. Water is driven off and the hydrous bisulfate melts at about 160°C. As the temperature is slowly increased, the molten bisulfate provides an excellent heat-transfer medium for melting the chromic acid at 197°C without appreciable decomposition. As soon as the chromic acid melts, the agitator is stopped and the mixture separates into a heavy layer of molten chromic acid and a light layer of molten bisulfate. The chromic acid is tapped and flaked on water cooled roUs to produce the customary commercial form. The bisulfate contains dissolved CrO and soluble and insoluble chromic sulfates. Environmental considerations dictate purification and return of the bisulfate to the treating operation. [Pg.138]

Acetaldehyde Cyanohydrin. This cyanohydrin, commonly known as lactonitnle, is soluble in water and alcohol, but insoluble in diethyl ether and carbon disulfide. Lactonitnle is used chiefly to manufacture lactic acid and its derivatives, primarily ethyl lactate. Lactonitnle [78-97-7] is manufactured from equimolar amounts of acetaldehyde and hydrogen cyanide containing 1.5% of 20% NaOH at —10 20 ° C. The product is stabili2ed with sulfuric acid (28). Sulfuric acid hydroly2es the nitrile to give a mixture of lactic acid [598-82-3] and ammonium bisulfate. [Pg.413]

This mixture can be purified by adding methanol to form methyl lactate [547-64-8] which is separated from the ammonium bisulfate. The methyl lactate is distilled, then hydroly2ed back to the aqueous acid. Removal of most of the water yields 90% lactic acid (29). [Pg.413]

The methaciylamide sulfate is esteiified with methanol to give methyl methacrylate and ammonium bisulfate [7802-63-6J as a by-product. [Pg.414]

Conversion of acetone cyanohydrin to methyl methacrylate produces a large amount of ammonium bisulfate by-product which lacks ready marketabihty and is usually converted to sulfuric acid for reuse in the conversion of acetone cyanohydrin to methacrylates. The nitrogen values of the... [Pg.414]


See other pages where Bisulfate is mentioned: [Pg.2751]    [Pg.239]    [Pg.100]    [Pg.100]    [Pg.163]    [Pg.900]    [Pg.900]    [Pg.912]    [Pg.374]    [Pg.273]    [Pg.349]    [Pg.280]    [Pg.25]    [Pg.27]    [Pg.168]    [Pg.523]    [Pg.203]    [Pg.449]    [Pg.275]    [Pg.352]    [Pg.572]    [Pg.482]    [Pg.243]   
See also in sourсe #XX -- [ Pg.1013 ]

See also in sourсe #XX -- [ Pg.171 ]

See also in sourсe #XX -- [ Pg.389 ]

See also in sourсe #XX -- [ Pg.30 , Pg.33 ]

See also in sourсe #XX -- [ Pg.18 , Pg.175 ]

See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Active Sampling and Bisulfate-Treated Filter Collection

Adsorption bisulfate

Alkyl bisulfates

Ammonia ammonium bisulfate

Ammonia bisulfate formation

Ammonia-Ammonium Bisulfate process

Ammonium bisulfate

Ammonium bisulfate concentration

Ammonium bisulfate formation

Bisulfate acid constant

Bisulfate anion adsorption

Bisulfate complexes

Bisulfate dissociation

Bisulfate ion

Bisulfate, inorganic salts

Bisulfates

Bisulfates

Clopidogrel bisulfate

Clopidogrel bisulfate (Plavix

Gold surface, bisulfate anion

Graphite bisulfate

Graphite bisulfate catalyst

Graphite bisulfate esterification

Lidocaine bisulfate

Methyl bisulfate

Passive Sampling and Bisulfate-Treated Filter Collection

Platinum surface, bisulfate anion

Platinum surface, bisulfate anion adsorption

Potassium bisulfate

Potassium bisulfate catalyst

Quinine bisulfate

Salts bisulfate

Sanofi-Synthelabo v. Apotex, Inc. (clopidogrel bisulfate)

Sodium bisulfate

Sodium bisulfate, catalyst

Tetra-n-butylammonium bisulfate

© 2024 chempedia.info