Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filtration vacuum

Filtration is usually carried out by suction under aspirator vacuum. The filtration units have a filter support made of sintered glass or ceramic material, although all-plastic filtration apparatus are commercially available (e.g., from Sartorius). Vacuum filtration has several disadvantages, mainly because of the potential contamination risks through the nature and number of transfer steps whereby the samples are in contact with different materials and the laboratory air. [Pg.31]


Cold filter plugging point EN 116 (NF M 07-042) Vacuum filtration through a calibrated filter... [Pg.447]

NH4. HCO3. CU and Na and the least soluble salt sodium hydrogen carbonate, is precipitated when ionic concentrations increase, and is removed by vacuum filtration. [Pg.133]

It will be a little tricky but one can also try to purify by freezing I The sassafras oil is thrown into the freezer to chill. Safrole itself freezes at -14°C so anything that starts to freeze prior to that can be cold filtered in a prechilled vacuum filtration setup. The filtrate goes back in the freezer until -14°C is reached and the mother lode of safrole freezes up. This again is filtered cold but this time the frozen mass of safrole crystals are washed with some ice cold methanol or ethanol (preferably at -14°C) to wash away the unfrozen high-boiling constituents. [Pg.34]

If one is absolutely serious about ultra pure safrole then it can be separated from the eugenol-free sassafras oil by treatment with mercuric acetate [1,2,3,4] which likes that terminal double bond that only safrole has. The Hg(AcO)2 latches on to safrole at that double bond bringing it into solution as a solid sort of like the way that eugenol was. The safrole can then be separated from its still oily buddies by vacuum filtration. Safrole is then regenerated to its normal oily form by treatment with hydrochloric acid (HCI) which flicks the Hg(AcO)2 off the safrole and the safrole double bond reforms. As it so happens, the mercuric acetate also reforms intact so that it can be reused again such as in one of those... [Pg.34]

After 12-24 hours of reflux the reaction is, for the most part, complete. The reaction mix will be a dark brown. So what does one do about all those brown particles and junk. Well, usually there aren t any. The solution should be uniformly dark. If any solids can be seen it means that they are insoluble in ethanol and can be removed from solution by gravity or vacuum filtration through a coffee filter or some paper towels. If it takes a day to drip through the filter then so-be-it. The ethanol with its payload of isosafrole will... [Pg.40]

The soiution is aliowed to cool and the crystals of the P2P-bisulfite addition compound are then separated by vacuum filtration, washed with a little clean dH20 then washed with a couple hundred mLs of ether, DCM or benzene. The filter cake of MD-P2P-bisulfate is processed by scraping the crystals into a flask and then 300mL of either 20% sodium carbonate solution or 10% HCi soiution are added (HCI works best). The soiution is stirred for another 30 minutes during which time the MD-P2P-bisulfite complex will be busted up and the P2P will return to its happy oil form. The P2P is then taken up with ether, dried and removed of the solvent to give pure MD-P2P. Whaddya think of that ... [Pg.58]

After 3 hours the stirring is stopped and the solution allowed to settle. By this time just about all the foil will have turned to dust, which is going to make the next step of vacuum filtration very difficult because it will plug up the filter paper in a second. So the chemist lets it settle, then pours off the liquid through the vacuum filtration setup (see methodology section). The flask is rinsed with lOOmL methanol, the methanol poured through the grey filter cake and the filter cake discarded. All of the filtrate is placed in a flask and vacuum distilled to remove all the methanol, isopropyl alcohol and water which will leave the chemist with oil and junk in the bottom of the flask. [Pg.103]

METHOD 2 [128, 129]--To make dibromodioxane one stirs 500g dioxane in a flask which is in an ice bath, all of which is in the hood. 990g of liquid Bra is rapidly added, causing the solution to get hot (one can also bubble in an approximate amount of bromine from a gas canister). The solution is dumped into a bucket containing 2L of ice water, causing the immediate formation of a large mass of orange dibromodioxane crystals which are separated by vacuum filtration and dried. [Pg.224]

After three hours the flask will have turned slightly darker in colour and the contents will look slightly more transparent. If so then everything is good, if not I doubt that you have anything to worry about. Allow to coo enough for the vacuum filtration, usually about 30 minutes. [Pg.226]

The distillation is the same as in the previous reaction, except there is no need to clean the condenser after the solvent is removed, as there are no solids left over from the reaction. No vacuum filtration is needed prior to the distillation either. However a vacuum of at least 10mm Is still required to distil the product. [Pg.230]

As the solution cools a big old mass of unreacted ammonium chloride will form. The chemist removes this by vacuum filtration and saves the crystals for reuse at another time. The golden colored filtrate is placed back in the flask and distilled (with vacuum now ) to reduce its volume by about a third. Temperature is not so much a problem now as the chemist will let the stuff distill over at whatever temperature is necessary. Sometimes the reducing solution is so concentrated that the remaining ammonium chloride crystals... [Pg.258]

The chemist may have to do one, or possibly two more volume reductions before all of the excess ammonium chloride is removed (usually just one more). Now, what the chemist will be looking at after the last removal of ammonium chloride is a light yellow, slightly viscous solution that is about 1/3 the volume of the original filtrate. The chemist puts this to distill once more. What often happens next is that while the chemist goes off to watch TV the solution will distill off just a little bit of volume and poof the hot solution will become an instant mass of methylamine hydrochloride. If this doesn t happen for the chemist then she will just reduce a little bit and chill. Either way, what the chemist is going to have is a nice mass of methylamine hydrochloride crystals that she separates by vacuum filtration. [Pg.259]

The way the chemist knows that she has methylamine and not ammonium chloride is that she compares the look of the two types of crystals. Ammonium chloride crystals that come from this reaction are white, tiny and fuzzy. The methylamine hydrochloride crystals are longer, more crystalline in nature and are a lot more sparkly. The chemist leaves the methylamine crystals in the Buchner funnel of the vacuum filtration apparatus and returns the filtrate to the distillation set up so it can be reduced one last time to afford a second crop. The combined methylamine hydrochloride filter cake is washed with a little chloroform, scraped into a beaker of hot ethanol and chilled. The methylamine hydrochloride that recrystallizes in the cold ethanol is vacuum filtered to afford clean, happy product (yield=50%). [Pg.259]

The polymer can easily be recovered by simple vacuum filtration or centrifugation of the polymer slurry. This can be followed by direct conversion of the filter cake to dope by slurrying the filter cake in chilled solvent and then passing the slurry through a heat exchanger to form the spinning solution and a thin-film evaporator to remove residual monomer. [Pg.280]

The type of floe requited depends on the separation process which foUows, eg, rotary vacuum filtration requites evenly sized, smaU, strong floes that capture ultrafines to prevent cloth blinding and cloudy filtrates. The floes should not be subject to sedimentation in the vat or breakage by the agitator. [Pg.389]

Eor most industrial inorganic sohds such as minerals etc, the increase in with Ap is not too great, and thus should the material to be filtered be too fine for vacuum filtration, pressure filtration may be advantageous and give better rates. [Pg.393]

Pressure filters can treat feeds with concentrations up to and in excess of 10% sohds by weight and having large proportions of difficult-to-handle fine particles. Typically, slurries in which the sohd particles contain 10% greater than 10 ]lni may require pressure filtration, but increasing the proportion greater than 10 ]lni may make vacuum filtration possible. The range of typical filtration velocities in pressure filters is from 0.025 to 5 m/h and dry sohds rates from 25 to 250 kg nY/h. The use of pressure filters may also in some cases, such as in filtration of coal flotation concentrates, eliminate the need for flocculation. [Pg.393]

In vacuum filters, the driving force for filtration results from the appHcation of a suction on the filtrate side of the medium. Although the theoretical pressure drop available for vacuum filtration is 100 kPa, in practice it is often limited to 70 or 80 kPa. [Pg.394]

Most continuous pressure filters available (ca 1993) have their roots in vacuum filtration technology. A rotary dmm or rotary disk vacuum filter can be adapted to pressure by enclosing it in a pressure cover however, the disadvantages of this measure are evident. The enclosure is a pressure vessel which is heavy and expensive, the progress of filtration cannot be watched, and the removal of the cake from the vessel is difficult. Other complications of this method are caused by the necessity of arranging for two or more differential pressures between the inside and outside of the filter, which requires a troublesome system of pressure regulating valves. [Pg.405]

There are many technical problems to be considered when developing a new commercial and viable filter. However, the filtration hardware in itself is not enough, as the control of a continuous pressure filter is much more difficult than that of its equivalents in vacuum filtration the necessary development may also include an automatic, computerized control system. This moves pressure filtration from low to medium or even high technology. Disk Filters. [Pg.405]

Drum Filters. The rotary dmm filter, also borrowed from vacuum filtration, makes relatively poor use of the space available in the pressure vessel, and the filtration areas and capacities of such filters cannot possibly match those of the disk pressure filters. In spite of this disadvantage, however, the pressure dmm filter has been extensively developed. [Pg.406]

The so-called hyperbar vacuum filtration is a combination of vacuum and pressure filtration in a pull—push arrangement, whereby a vacuum pump of a fan generates vacuum downstream of the filter medium, while a compressor maintains higher-than-atmospheric pressure upstream. If, for example, the vacuum produced is 80 kPa, ie, absolute pressure of 20 kPa, and the absolute pressure before the filter is 150 kPa, the total pressure drop of 130 kPa is created across the filter medium. This is a new idea in principle but in practice requires three primary movers a Hquid pump to pump in the suspension, a vacuum pump to produce the vacuum, and a compressor to supply the compressed air. The cost of having to provide, install, and maintain one additional primary mover has deterred the development of hyperbar vacuum filtration only Andrit2 in Austria offers a system commercially. [Pg.407]

The ammonium sulfate and sodium chloride are simultaneously dissolved, preferably ia a heel of ammonium chloride solution. The sodium chloride is typically ia excess of about 5%. The pasty mixture is kept hot and agitated vigorously. When the mixture is separated by vacuum filtration, the filter and all connections are heated to avoid cmst formation. The crystalline sodium sulfate is washed to remove essentially all of the ammonium chloride and the washings recycled to the process. The ammonium chloride filtrate is transferred to acid resistant crystallising pans, concentrated, and cooled to effect crystallisation. The crystalline NH Cl is washed with water to remove sulfate and dried to yield a product of high purity. No attempt is made to recover ammonium chloride remaining ia solution. The mother Hquor remaining after crystallisation is reused as a heel. [Pg.364]

Caustic soda is removed from the carbonate—bicarbonate solution by treating with a slight excess of hard-burned quicklime (or slaked lime) at 85—90°C in a stirred reactor. The regenerated caustic soda is separated from the calcium carbonate precipitate (lime mud) by centrifuging or rotary vacuum filtration. The lime mud retains 30—35% Hquid and, to avoid loss of caustic soda, must be weU-washed on the filter or centrifuge. Finally, the recovered caustic solution is adjusted to the 10% level for recycle by the addition of 40% makeup caustic soda. [Pg.340]

Vibrating screens and centrifuges are used for dewatering. Eor very fine coal, such as that obtained from flotation, vacuum filtration with a disk or... [Pg.230]

Additions of new flocculants after conventional thickening produce further dewatering of mineral slimes. A clay flocculated with polyacrylamides and rotated in a dmm can produce a growth of compact kaolin pellets (84), which can easily be wet-screened and dewatered. A device called a Dehydmm, which flocculates and pelletizes thickened sludges into round, 3-mm pellets, was developed for this purpose. Several units reported in commercial operation in Japan thicken fine refuse from coal-preparation plants. The product contains 50% moisture, compared with 3% soflds fed into the Dehydmm from the thickener underflow (85). In Poland, commercial use of the process to treat coal fines has been reported (86), and is said to compare favorably both economically and technically to thickening and vacuum filtration. [Pg.24]

J. G. Groppo and B. K. Parekh, Effect of Metal Ions on Vacuum Filtration of Coal, Society for Mining, Metallurgy and Exploration, Annual Meeting,... [Pg.28]

It is known that the specific resistance for centrifuge cake, especially for compressible cake, is greater than that of the pressure or vacuum filter. Therefore, the specific resistance has to be measured from centrifuge tests for different cake thicknesses so as to scale up accurately for centrifuge performance. It cannot be extrapolated from pressure and vacuum filtration data. For cake thickness that is much smaller compared to the basket radius, Eq. (18-116 7) can be approximated by... [Pg.1740]

Glutaraldehyde [111-30-8] M 100.1, b 71 /10mm, as 50% aq soln. Likely impurities are oxidation products - acids, semialdehydes and polymers. It can be purified by repeated washing with activated charcoal (Norit) followed by vacuum filtration, using 15-20g charcoal/KKhnL of glutaraldehyde soln. [Pg.251]

Hydroxylamine [7803-49-8] M 33.0, m 33.1 , b 56.5 /22mm, d 1.226, pK 5.96. Crystd from n-butanol at -10°, collected by vacuum filtration and washed with cold diethyl ether. Harmful vapours. [Pg.431]

A sodium sulfate solution which is not freshly prepared ultimately gives a precipitate of small particle size that is exceedingly difficult and tedious to separate by vacuum filtration. [Pg.56]

There are several advantages that vacuum filtration has over other solid-liquid separation methods. Some of these advantages include ... [Pg.345]


See other pages where Filtration vacuum is mentioned: [Pg.16]    [Pg.29]    [Pg.196]    [Pg.210]    [Pg.237]    [Pg.257]    [Pg.36]    [Pg.372]    [Pg.135]    [Pg.266]    [Pg.26]    [Pg.285]    [Pg.375]    [Pg.22]    [Pg.2008]    [Pg.2229]    [Pg.78]    [Pg.24]    [Pg.64]   
See also in sourсe #XX -- [ Pg.345 ]

See also in sourсe #XX -- [ Pg.520 , Pg.521 , Pg.522 , Pg.523 ]

See also in sourсe #XX -- [ Pg.77 , Pg.324 ]

See also in sourсe #XX -- [ Pg.91 ]

See also in sourсe #XX -- [ Pg.585 ]

See also in sourсe #XX -- [ Pg.41 ]

See also in sourсe #XX -- [ Pg.345 ]

See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.48 ]

See also in sourсe #XX -- [ Pg.9 , Pg.198 ]

See also in sourсe #XX -- [ Pg.198 , Pg.279 ]

See also in sourсe #XX -- [ Pg.219 ]

See also in sourсe #XX -- [ Pg.103 , Pg.106 ]

See also in sourсe #XX -- [ Pg.69 , Pg.70 ]

See also in sourсe #XX -- [ Pg.18 ]

See also in sourсe #XX -- [ Pg.331 , Pg.337 , Pg.345 , Pg.351 , Pg.352 , Pg.358 ]




SEARCH



Biomass separation vacuum filtration

Continuous rotary vacuum filtration

Filtration horizontal vacuum filters

Filtration rotary vacuum filter

Filtration vacuum membrane

Filtration, cost vacuum

Hyperbar vacuum filtration

Liquid filtration vacuum process filters

Microfiltration rotary vacuum filtration

Rotary vacuum drum filtration

Rotary vacuum filtration

Rotary vacuum filtration precoat

Rotary vacuum filtration washing efficiency

Use of Vacuum Filtration

Vacuum Filtration on a Curved Concave Surface, the Internal Filter

Vacuum Filtration on a Curved Convex Surface, the Drum Filter

Vacuum filtration batch filters

Vacuum filtration choice

Vacuum filtration continuous filters

Vacuum filtration filters

Vacuum filtration plants

Vacuum filtration, water

Vacuum filtration, water trap

© 2024 chempedia.info