Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biological systems membranes

Biological systems (membranes, DNA, proteins, etc...) display specific motions, global rotation and local dynamics, that are dependent on the structure, the environment and the function of the system. These motions differ from a system to another and, within one system local motions are not the same. The most known example is that of membrane phospholipids where the hydrophilic phosphates are rigid and the hydrophobic lipid is highly mobile. Polarized light is a good tool to put into evidence and to study the different types of rotations a molecule can undergo. [Pg.193]

Relevance Technical applications (e.g., displays) Biological systems, membranes, Langmuir-Blodgett-films... [Pg.310]

Present-day life forms are cellular with phospholipid bilayer membranes forming the primary barrier that separates the interior of the cell from the external environment. It has been proposed that similar encapsulating structures, based on, for example, fatty acids, could have self assembled in the prebiological environment, thus providing an enclosed reaction system. It should be noted that in presently evolved biological systems, membranes can contain up to 15% fatty acid content, mixed with phospholipid. [Pg.50]

Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Interactions between macromolecules (protems, lipids, DNA,.. . ) or biological structures (e.g. membranes) are considerably more complex than the interactions described m the two preceding paragraphs. The sum of all biological mteractions at the molecular level is the basis of the complex mechanisms of life. In addition to computer simulations, direct force measurements [98], especially the surface forces apparatus, represent an invaluable tool to help understand the molecular interactions in biological systems. [Pg.1741]

In biological systems molecular assemblies connected by non-covalent interactions are as common as biopolymers. Examples arc protein and DNA helices, enzyme-substrate and multienzyme complexes, bilayer lipid membranes (BLMs), and aggregates of biopolymers forming various aqueous gels, e.g, the eye lens. About 50% of the organic substances in humans are accounted for by the membrane structures of cells, which constitute the medium for the vast majority of biochemical reactions. Evidently organic synthesis should also develop tools to mimic the Structure and propertiesof biopolymer, biomembrane, and gel structures in aqueous media. [Pg.350]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Immobilization. Enzymes, as individual water-soluble molecules, are generally efficient catalysts. In biological systems they are predorninandy intracellular or associated with cell membranes, ie, in a type of immobilized state. This enables them to perform their activity in a specific environment, be stored and protected in stable form, take part in multi-enzyme reactions, acquire cofactors, etc. Unfortunately, this optimization of enzyme use and performance in nature may not be directiy transferable to the laboratory. [Pg.291]

A lot of analytical techniques have been proposed in recent decades and most of them are based on enzymes, called dehydrogenases, which are not sensitive to oxygen and need cofactors such as NAD". The key problems which seriously hamper a wide commercialization of biosensors and enzymatic kits based on NAD-dependent enzymes are necessity to add exogenous cofactor (NAD" ) into the samples to be analyzed to incorporate into the biologically active membrane of sensors covalently bounded NAD" to supply the analytical technique by NAD -regeneration systems. [Pg.303]

The lipids found in biological systems are either hydrophobic (containing only nonpolar groups) or amphipathic, which means they possess both polar and nonpolar groups. The hydrophobic nature of lipid molecules allows membranes to act as effective barriers to more polar molecules. In this chapter, we discuss the chemical and physical properties of the various classes of lipid molecules. The following chapter considers membranes, whose properties depend intimately on their lipid constituents. [Pg.238]

In the biological field, much attention has been directed toward the transport phenomena through membrane. Although the function of some natural ionophores has been known, the investigation of active and selective transport of ions using the artificial ionophores in the simple model systems may be important to simulate the biological systems and clarify the transport behaviour of natural membranes. [Pg.57]

The presence of polymer, solvent, and ionic components in conducting polymers reminds one of the composition of the materials chosen by nature to produce muscles, neurons, and skin in living creatures. We will describe here some devices ready for commercial applications, such as artificial muscles, smart windows, or smart membranes other industrial products such as polymeric batteries or smart mirrors and processes and devices under development, such as biocompatible nervous system interfaces, smart membranes, and electron-ion transducers, all of them based on the electrochemical behavior of electrodes that are three dimensional at the molecular level. During the discussion we will emphasize the analogies between these electrochemical systems and analogous biological systems. Our aim is to introduce an electrochemistry for conducting polymers, and by extension, for any electrodic process where the structure of the electrode is taken into account. [Pg.312]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Cell membranes are not simply passive containers for the cell s contents. Rather, they are highly organized, dynamic, and stractiirally complex biological systems that regulate the transfer of specific chemicals throngh the cell wall. [Pg.39]

Fe-4S] + + clusters are certainly the most ubiquitous iron-sulfur centers in biological systems. They play the role of low potential redox centers in ferredoxins, membrane-bound complexes of the respiratory... [Pg.442]

This strnctnring of liqnids into discrete layers when confined by a solid surface has been more readily observable in liquid systems other than water [1,55]. In fact, such solvation forces in water, also known as hydration forces, have been notoriously difficult to measure due to the small size of the water molecule and the ease with which trace amounts of contamination can affect the ordering. However, hydration forces are thought to be influential in many adhesive processes. In colloidal and biological systems, the idea that the hydration layer mnst be overcome before two molecules, colloidal particles, or membranes can adhere to each other is prevalent. This implies that factors affecting the water structure, such as the presence of salts, can also control adhesive processes. [Pg.37]

From an electrochemical viewpoint, biological systems are highly branched circuits consisting of ionic conductors of aqueous electrolyte solutions and highly selective membranes. These circuits lack metallic conductors, but it has been found relatively recently that they contain sections that behave like electronic conductors (i.e., sections in which electrons can be transferred over macroscopic distances, owing to a peculiar relay-type mechanism). [Pg.574]

The high catalytic activity of enzymes has a number of sources. Every enzyme has a particular active site configured so as to secure intimate contact with the substrate molecule (a strictly defined mutual orientation in space, a coordination of the electronic states, etc.). This results in the formation of highly reactive substrate-enzyme complexes. The influence of tfie individual enzymes also rests on the fact that they act as electron shuttles between adjacent redox systems. In biological systems one often sees multienzyme systems for chains of consecutive steps. These systems are usually built into the membranes, which secures geometric proximity of any two neighboring active sites and transfer of the product of one step to the enzyme catalyzing the next step. [Pg.585]

Applications Membranes create a boundary between different bulk gas or hquid mixtures. Different solutes and solvents flow through membranes at different rates. This enables the use of membranes in separation processes. Membrane processes can be operated at moderate temperatures for sensitive components (e.g., food, pharmaceuticals). Membrane processes also tend to have low relative capital and energy costs. Their modular format permits rehable scale-up and operation. This unit operation has seen widespread commercial adoption since the 1960s for component enrichment, depletion, or equilibration. Estimates of annual membrane module sales in 2005 are shown in Table 20-16. Applications of membranes for diagnostic and bench-scale use are not included. Natural biological systems widely employ membranes to isolate cells, organs, and nuclei. [Pg.36]


See other pages where Biological systems membranes is mentioned: [Pg.389]    [Pg.293]    [Pg.304]    [Pg.389]    [Pg.293]    [Pg.304]    [Pg.2817]    [Pg.199]    [Pg.391]    [Pg.393]    [Pg.10]    [Pg.372]    [Pg.227]    [Pg.260]    [Pg.301]    [Pg.55]    [Pg.2]    [Pg.79]    [Pg.308]    [Pg.426]    [Pg.422]    [Pg.471]    [Pg.161]    [Pg.176]    [Pg.301]    [Pg.4]    [Pg.4]    [Pg.128]    [Pg.418]    [Pg.116]    [Pg.29]    [Pg.119]    [Pg.119]   
See also in sourсe #XX -- [ Pg.691 , Pg.698 , Pg.699 , Pg.708 , Pg.721 , Pg.723 , Pg.724 ]




SEARCH



Biological membranes

© 2024 chempedia.info