Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Balance impact

Thermal Properties. ABS is also used as a base polymer in high performance alloys. Most common are ABS—polycarbonate alloys which extend the property balance achievable with ABS to offer even higher impact strength and heat resistance (2). [Pg.203]

Atomization. A gas or Hquid may be dispersed into another Hquid by the action of shearing or turbulent impact forces that are present in the flow field. The steady-state drop si2e represents a balance between the fluid forces tending to dismpt the drop and the forces of interfacial tension tending to oppose distortion and breakup. When the flow field is laminar the abiHty to disperse is strongly affected by the ratio of viscosities of the two phases. Dispersion, in the sense of droplet formation, does not occur when the viscosity of the dispersed phase significantly exceeds that of the dispersing medium (13). [Pg.100]

Automotive and architectural laminates of PVB develop maximum impact strength near 20°C, as shown in Figure 2. This balance is obtained by the plasticizer-to-resin ratio and the molecular weight of the resins. It has been adjusted to this optimum temperature based on environmental conditions and automobile population at various ambient temperatures. The frequency and severity of vehicle occupant injuries vs temperature ranges at the accident location have been studied (5), and the results confirm the selection of the maximum performance temperature and decreasing penetration resistance at temperature extremes. [Pg.524]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

The ethylene-based, balanced vinyl chloride process, which accounts for nearly all capacity worldwide, has been practiced by a variety of vinyl chloride producers since the mid-1950s. The technology is mature, so that the probabiUty of significant changes is low. New developments in production technology will likely be based on incremental improvements in raw material and energy efficiency, environmental impact, safety, and process reUabiUty. [Pg.422]

Overall comparison between amine and carbonate at elevated pressures shows that the amine usually removes carbon dioxide to a lower concentration at a lower capital cost but requires more maintenance and heat. The impact of the higher heat requirement depends on the individual situation. In many appHcations, heat used for regeneration is from low temperature process gas, suitable only for boiler feed water heating or low pressure steam generation, and it may not be usefiil in the overall plant heat balance. [Pg.22]

The impact that variations in coke content and burning conditions can have on the overall heat of coke combustion is shown in Table 2. Because the heat balance dictates the amount of heat that is required from burning coke, the heat of combustion then determines the amount of coke that must be burned. [Pg.210]

Product Recovery. Comparison of the electrochemical cell to a chemical reactor shows the electrochemical cell to have two general features that impact product recovery. CeU product is usuaUy Uquid, can be aqueous, and is likely to contain electrolyte. In addition, there is a second product from the counter electrode, even if this is only a gas. Electrolyte conservation and purity are usual requirements. Because product separation from the starting material may be difficult, use of reaction to completion is desirable ceUs would be mn batch or plug flow. The water balance over the whole flow sheet needs to be considered, especiaUy for divided ceUs where membranes transport a number of moles of water per Earaday. At the inception of a proposed electroorganic process, the product recovery and refining should be included in the evaluation to determine tme viabUity. Thus early ceU work needs to be carried out with the preferred electrolyte/solvent and conversion. The economic aspects of product recovery strategies have been discussed (89). Some process flow sheets are also available (61). [Pg.95]

Review Scheduling A review scheduhng procedure should be estabhshed that documents who is responsible for initiating the review and when the review(s) should occur during the project. The scheduling needs to balance availability of process information, review technique used, and the impact of potential review action items on project costs (i.e., early enough to minimize the cost of any potential changes to the process). The aclual amount of time needed for the review should also be stated in the procedure. On the basis of the number of project reviews required and the estimated time needed for each review, the project cost estimate should include the cost for project reviews as part of the total cost for the project. [Pg.2285]

An example adapted from Verneuil, et al. (Verneuil, V.S., P. Yan, and F. Madron, Banish Bad Plant Data, Chemical Engineeiing Progress, October 1992, 45-51) shows the impact of flow measurement error on misinterpretation of the unit operation. The success in interpreting and ultimately improving unit performance depends upon the uncertainty in the measurements. In Fig. 30-14, the materi balance constraint would indicate that S3 = —7, which is unrealistic. However, accounting for the uncertainties in both Si and S9 shows that the value for S3 is —7 28. Without considering uncertainties in the measurements, analysts might conclude that the flows or model contain bias (systematic) error. [Pg.2563]

The operating company must underwrite the emissions associated with the plant through environmental impact reporting. Such accounting has become an important part of the design. Rather than pass over the need for a closed heat and material balance at the study stage of a project, it is better to get this job done as early as possible. Persistence is sometimes required. [Pg.215]

The analysis on whether to buy or lease should be done very carefully. The assumption of risk, impact on the balance sheet, tax consequences, etc., must be studied. [Pg.245]

In addition to acting as impact modifiers a number of polymeric additives may be considered as processing aids. These have similar chemical constitutions to the impact modifiers and include ABS, MBS, chlorinated polyethylene, acrylate-methacrylate copolymers and EVA-PVC grafts. Such materials are more compatible with the PVC and are primarily included to ensure more uniform flow and hence improve surface finish. They may also increase gelation rates. In the case of the compatible MBS polymers they have the special function already mentioned of balancing the refractive indices of the continuous and disperse phases of impact-modified compound. [Pg.342]


See other pages where Balance impact is mentioned: [Pg.66]    [Pg.3]    [Pg.391]    [Pg.2915]    [Pg.626]    [Pg.66]    [Pg.3]    [Pg.391]    [Pg.2915]    [Pg.626]    [Pg.187]    [Pg.728]    [Pg.2470]    [Pg.2810]    [Pg.206]    [Pg.517]    [Pg.380]    [Pg.191]    [Pg.267]    [Pg.267]    [Pg.274]    [Pg.280]    [Pg.421]    [Pg.421]    [Pg.87]    [Pg.87]    [Pg.520]    [Pg.132]    [Pg.77]    [Pg.153]    [Pg.508]    [Pg.437]    [Pg.438]    [Pg.334]    [Pg.248]    [Pg.197]    [Pg.299]    [Pg.549]    [Pg.1744]    [Pg.281]    [Pg.19]    [Pg.131]    [Pg.39]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Impact assessments mass balances

Impact modification Balancing stiffness with toughness

Potential impact balance

© 2024 chempedia.info