Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic Emission Systems

Atomic emission spectroscopy is one of the most useful and commonly used techniques for analyses of metals and nonmetals providing rapid, sensitive results for analytes in a wide variety of sample matrices. Elements in a sample are excited during their residence in an analytical plasma, and the light emitted from these excited atoms and ions is then collected, separated and detected to produce an emission spectrum. The instrumental components which comprise an atomic emission system include (1) an excitation source, (2) a spectrometer, (3) a detector, and (4) some form of signal and data processing. The methods discussed will include (1) sample introduction, (2) line selection, and (3) spectral interferences and correction techniques. [Pg.45]

A critical part of the instrument is the interface, which allows ions generated by the ICP to be uniformly transferred to the mass spectrometer for isolation and measurement. This interface is the most innovative aspect of combining the well-known ICP technology, used with atomic emission systems, to commonly used mass spectrometers for ion analysis. [Pg.30]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

In the context of chemometrics, optimization refers to the use of estimated parameters to control and optimize the outcome of experiments. Given a model that relates input variables to the output of a system, it is possible to find the set of inputs that optimizes the output. The system to be optimized may pertain to any type of analytical process, such as increasing resolution in hplc separations, increasing sensitivity in atomic emission spectrometry by controlling fuel and oxidant flow rates (14), or even in industrial processes, to optimize yield of a reaction as a function of input variables, temperature, pressure, and reactant concentration. The outputs ate the dependent variables, usually quantities such as instmment response, yield of a reaction, and resolution, and the input, or independent, variables are typically quantities like instmment settings, reaction conditions, or experimental media. [Pg.430]

Recently it has been shown that rotating coiled columns (RCC) can be successfully applied to the dynamic (flow-through) fractionation of HM in soils and sediments [1]. Since the flow rate of the extracting reagents in the RCC equipment is very similar to the sampling rate that is used in the pneumatic nebulization in inductively coupled plasma atomic emission spectrometer (ICP-AES), on-line coupling of these devices without any additional system seems to be possible. [Pg.459]

Such a system with an atomic emission detector (AED) for the analysis of nitrogen-chlorine- and Sulfur-containing pesticides in aqueous samples (39), as shown in Figure 2.19. [Pg.37]

Figure 2.19 Schematic representation of an on-line liquid-liquid extraction-GC/AED system. Reprinted from Journal of High Resolution Chromatography, 18, E. C. Goosens et al, Continuous liquid-liquid extraction combined on-line with capillary gas chromatography- atomic emission detection for environmental analysis , pp. 38-44, 1995, with permission from Wiley-VCH. Figure 2.19 Schematic representation of an on-line liquid-liquid extraction-GC/AED system. Reprinted from Journal of High Resolution Chromatography, 18, E. C. Goosens et al, Continuous liquid-liquid extraction combined on-line with capillary gas chromatography- atomic emission detection for environmental analysis , pp. 38-44, 1995, with permission from Wiley-VCH.
ScHiFFER U, Krivan V (i999) A graphite furnace electrothermal vaporization system for inductively coupled plasma atomic emission spectrometry. Anal Chem 70 482-490. [Pg.47]

The presence of heteroatoms usually provides a convenient feature for improving selectivity by employing selective detection mechanisms. GC may then use flame photometric detection (FPD) for S and P atoms and to a certain extent for N, Se, Si etc. thermoselective detection (TSD) and nitrogen-phosphorus detection (NPD) for N and P atoms electron capture detection (ECD) for halogen atoms (E, Cl, Br, and 1) and for systems with conjugated double bonds and electron-drawing groups or atomic emission detection (AED) for many heteroatoms. [Pg.53]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

Catalyst characterization - Characterization of mixed metal oxides was performed by atomic emission spectroscopy with inductively coupled plasma atomisation (ICP-AES) on a CE Instraments Sorptomatic 1990. NH3-TPD was nsed for the characterization of acid site distribntion. SZ (0.3 g) was heated up to 600°C using He (30 ml min ) to remove adsorbed components. Then, the sample was cooled at room temperatnre and satnrated for 2 h with 100 ml min of 8200 ppm NH3 in He as carrier gas. Snbseqnently, the system was flashed with He at a flowrate of 30 ml min for 2 h. The temperatnre was ramped np to 600°C at a rate of 10°C min. A TCD was used to measure the NH3 desorption profile. Textural properties were established from the N2 adsorption isotherm. Snrface area was calcnlated nsing the BET equation and the pore size was calcnlated nsing the BJH method. The resnlts given in Table 33.4 are in good agreement with varions literature data. [Pg.299]

Spectrometric detection systems based on measurement of atomic weight and atomic emission can potentially fulfil these requirements. [Pg.178]

The experimental system for measuring the sonoluminescence spectrum of alkali-metal atom emission from an aqueous solution is similar to that for measuring the MBSL spectrum from water. Degassing the solution is an important procedure because the presence of dissolved air affects the emission intensity. In an air-saturated solution, no observation of alkali-metal atom emission has been reported, whereas continuum emission can be observed. A typical experimental apparatus using ultrasonic standing waves is shown in Fig. 13.3 [8]. The cylindrical sample container is made of stainless steel, and its size is 46 mm in diameter and 150 mm in... [Pg.339]

The extension of inductively coupled plasma (ICP) atomic emission spectrometry to seawater analysis has been slow for two major reasons. The first is that the concentrations of almost all trace metals of interest are 1 xg/l or less, below detection limits attainable with conventional pneumatic nebulisation. The second is that the seawater matrix, with some 3.5% dissolved solids, is not compatible with most of the sample introduction systems used with ICP. Thus direct multielemental trace analysis of seawater by ICP-AES is impractical, at least with pneumatic nebulisation. In view of this, a number of alternative strategies can be considered ... [Pg.258]

Goulden et al. [123] have described a semi-automated system for the determination of arsenic and selenium by hydride generation-industrively coupled plasma atomic-emission spectrometry. Sediments are brought into a solution by fusion with sodium hydroxide. [Pg.350]

Organotin compounds enriched from a diethylether extract of a snow sample collected from the city of Gdansk, Poland and analyzed are shown in Fig. 22 b, c [286]. Gas chromatography with atomic emission detection (GC-AED) run in the chlorine and tin channels, respectively, revealed the presence of tributyltin chloride and this was subsequently confirmed by GC-MS and GC-AED analyses of an internal standard solution (e.g., 1-chlorooctane) of that compound. Quantification was based on the response to chlorine (wavelength 479 nm) in the AED system, and a detection limit of 0.5-1 ng/1 was achieved for all the reference substances. [Pg.46]

To produce this type of atomic emission in a pyrotechnic system, one must produce sufficient heat to generate atomic vapor in the flame, and then excite the atoms from the ground to various possible excited electronic states. Emission intensity will increase as the flame temperature increases, as more and more atoms are vaporized and excited. Return of the atoms to their ground state produces the light emission. A pattern of wavelengths, known as an atomic spectrum, is produced by each element. This pattern - a series of lines - corresponds to the various electronic... [Pg.30]

A schematic diagram of an ICP-MS instrument is shown in Fig. 5.1. The TCP part bears an almost exact resemblance to the ICP used for atomic emission spectrometry, with the obvious exception that it is turned on one side. Indeed, sample introduction systems, radiofrequency generators and the nature of ICP itself are often the same for ICP-MS and ICP-AES systems, with the usual variations between individual manufacturers. [Pg.115]

In some flame AFS systems, interference filters and solar blind photomultipliers have been used to reduce the background, but usually a conventional monochromator is used. As in AAS, the source signal is modulated so that the atomic fluorescence can be distinguished from atomic emission. [Pg.139]


See other pages where Atomic Emission Systems is mentioned: [Pg.274]    [Pg.521]    [Pg.573]    [Pg.664]    [Pg.145]    [Pg.274]    [Pg.521]    [Pg.573]    [Pg.664]    [Pg.145]    [Pg.441]    [Pg.97]    [Pg.420]    [Pg.247]    [Pg.791]    [Pg.7]    [Pg.472]    [Pg.473]    [Pg.483]    [Pg.340]    [Pg.314]    [Pg.300]    [Pg.51]    [Pg.251]    [Pg.529]    [Pg.357]    [Pg.246]    [Pg.265]    [Pg.82]    [Pg.457]    [Pg.160]    [Pg.413]    [Pg.158]    [Pg.228]    [Pg.10]   


SEARCH



Atomic emission

Atomic systems

© 2024 chempedia.info