Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ascorbic acid solubility

To make ascorbic acid soluble in fats, it is reacted with fatty acids, such as palmitic acid, to form ascorbyl palmitate. This is used to prevent oxidation in fats and oils. [Pg.15]

Another group of compounds called oxygen scavengers retard oxidation by reducing the available molecular oxygen. Products in this group are water soluble and include erythorbic acid [89-65-6] C HgO, and its salt sodium erythorbate [6381-77-7] C HgO Na, ascorbyl pahnitate [137-66-6] 22 38 7 ascorbic acid [50-81-7] C HgO, glucose oxidase [9001-37-0] and sulfites (23). [Pg.437]

Of the water-soluble vitamins, intakes of nicotinic acid [59-67-6] on the order of 10 to 30 times the recommended daily allowance (RE)A) have been shown to cause flushing, headache, nausea, and moderate lowering of semm cholesterol with concurrent increases in semm glucose. Toxic levels of foHc acid [59-30-3] are ca 20 mg/d in infants, and probably approach 400 mg/d in adults. The body seems able to tolerate very large intakes of ascorbic acid [50-81-7] (vitamin C) without iH effect, but levels in excess of 9 g/d have been reported to cause increases in urinary oxaHc acid excretion. Urinary and blood uric acid also rise as a result of high intakes of ascorbic acid, and these factors may increase the tendency for formation of kidney or bladder stones. AH other water-soluble vitamins possess an even wider margin of safety and present no practical problem (82). [Pg.479]

Solvent extraction techniques are useful in the quantitative analysis of niobium. The fluoro complexes are amenable to extraction by a wide variety of ketones. Some of the water-insoluble complexes with organic precipitants are extractable by organic solvents and colorimetry is performed on the extract. An example is the extraction of the niobium—oxine complex with chloroform (41). The extraction of the niobium—pyrocatechol violet complex with tridodecylethylammonium bromide and the extraction of niobium—pyrocatechol—sparteine complex with chloroform are examples of extractions of water-soluble complexes. Colorimetry is performed on the extract (42,43). Colorimetry may also be performed directly on the water-soluble complex, eg, using ascorbic acid and 5-nitrosahcyhc acid (44,45). [Pg.25]

Stability. Ascorbic acid, a white crystalline compound, is very soluble ia water and has a sharp, acidic taste. In solution, the vitamin oxidizes on exposure to air, light, and elevated temperatures. Solutions of ascorbic acid turn yellowish, followed by development of a tan color. Ascorbic acid is stable to air when dry but gradually darkens on exposure to light. [Pg.14]

Ascorbic acid also forms soluble chelate complexes with iron (142—145). It seems ascorbic acid has no effect on high iron levels found in people with iron overload (146). It is well known, in fact, that ascorbic acid in the presence of iron can exhibit either prooxidant or antioxidant effects, depending on the concentration used (147). The combination of citric acid and ascorbic acid may enhance the iron load in aging populations. Iron overload may be the most important common etiologic factor in the development of heart disease, cancer, diabetes, osteoporosis, arthritis, and possibly other disorders. The synergistic combination of citric acid and ascorbic acid needs further study, particularly because the iron overload produced may be correctable (147). [Pg.22]

Ascorbic acid is very soluble in water and mainly excreted in the urine. No ascorbic acid is excreted during vitamin C deficiency. A minimum amount is lost in the feces, even after intake of gram dosages (154). [Pg.22]

Ascorbic acid commonly known as vitamin C, is one of the most important water soluble vitamins. Ascorbic acid is involved in many biological processes and it is an essential compound in the human diet [1]. The determination of ascorbic acid has gained increase significance in pharmaceutic, clinical, and food applications. So far, different methods have been developed for determination of ascorbic acid [2, 3]. [Pg.154]

Phosphorus and Silicon in Waters, Effluents and Sludges [e.g. Phosphorus in Waters, Effluents and Sludges by Spectrophotometry-phosphomolybdenum blue method. Phosphorus in Waters and Acidic Digests by Spectrophotometry-phosphovanadomolybdate method. Ion Chromatographic Methods for the Determination of Phosphorus Compound, Pretreatment Methods for Phosphorus Determinations, Determination of silicon by Spectrophotometric Determination of Molybdate Reactive Silicon-1 -amino-2-naphthol-4, sulphonic acid (ANSA) or Metol reduction methods or ascorbic acid reduction method. Pretreatment Methods to Convert Other Eorms of Silicon to Soluble Molybdate Reactive Silicon, Determination of Phosphorus and Silicon Emission Spectrophotometry], 1992... [Pg.315]

It is therefore possible to determine cations such as Ca2+, Mg2+, Pb2+, and Mn2+ in the presence of the above-mentioned metals by masking with an excess of potassium or sodium cyanide. A small amount of iron may be masked by cyanide if it is first reduced to the iron(II) state by the addition of ascorbic acid. Titanium(IV), iron(III), and aluminium can be masked with triethanolamine mercury with iodide ions and aluminium, iron(III), titanium(lV), and tin(II) with ammonium fluoride (the cations of the alkaline-earth metals yield slightly soluble fluorides). [Pg.313]

Various initiation strategies and surfactant/cosurfactant systems have been used. Early work involved in situ alkoxyamine formation with either oil soluble (BPO) or water soluble initiators (persulfate) and traditional surfactant and hydrophobic cosurfactants. Later work established that preformed polymer could perform the role of the cosurfactant and surfactant-free systems with persulfate initiation were also developed, l90 222,2i3 Oil soluble (PS capped with TEMPO,221 111,224 PBA capped with 89) and water soluble alkoxyamines (110, sodium salt""4) have also been used as initiators. Addition of ascorbic acid, which reduces the nitroxide which exits the particles to the corresponding hydroxylamine, gave enhanced rates and improved conversions in miniemulsion polymerization with TEMPO.225 Ascorbic acid is localized in the aqueous phase by solubility. [Pg.482]

Isoascorbic acid, l-ascorbic acid [C6Hg06 or 0C4H 0(0H)2-CHOH(CH)2OH] has a MW of 176.1, It is available as white to yellow granular crystals, It is soluble in water to the extent of 43%. [Pg.497]

Commercial green tea leaves contain ascorbic acid (vitamin C) about 280 mg per 100 g dried leaves. Vitamin E in tea leaves is around 24-80 mg/lOOg dry weight but, because of its lipophilicity, solubility is low in tea infusions. The content of B vitamins in tea is around 8-15 mg/lOOg (Cheng and Chen 1994). [Pg.133]

The effect of various types of inhibitors with respect to structure and solubility on the formation of N-Nitrosodiethanolamine was studied in a prototype oil in water anionic emulsion, Nitrosation resulted from the action of nitrite on diethanolamine at pH 5.2-5.A, Among the water soluble inhibitors incorporated into the aqueous phase, sodium bisulfite and ascorbic acid were effective. Potassium sorbate was much less so. The oil soluble inhibitors were incorporated into the oil phase of the emulsion. [Pg.149]

Evidence exists that the relative solubility of amines and inhibitors in heterogeneous oil-water systems could be decisive in formation of nitrosamines and blocking these reactions, Nitrosopyrrolidine formation in bacon predominates in the adipose tissue despite the fact that its precursor, proline, predominates in the lean tissue (5,6,7). Mottram and Patterson (8) partly attribute this phenomenon to the fact that the adipose tissue furnishes a medium in which nitrosation is favored, Massey, et al, (9) found that the presence of decane in a model heterogeneous system caused a 20-fold increase in rate of nitrosamine formation from lipophilic dihexylamine, but had no effect on nitrosation of hydrophilic pyrrolidine. Ascorbic acid in the presence of decane enhanced the synthesis of nitrosamines from lipophilic amines, but had no effect on nitrosation of pyrrolidine. The oil-soluble inhibitor ascorbyl palmitate had little influence on the formation of nitrosamines in the presence or absence of decane. [Pg.150]

The criteria for choosing inhibitors in this study were the ability to compete with diethanolamine for the nitrite and lack of toxicity. An attempt was made to cover as broad a group as possible within the limits of feasibility. Ascorbic acid in its water soluble form and its oil soluble form, the palmitate, represent the enediols, Sorbate is a diene fatty acid which has been shown to inhibit nitrosation (10), Since the pK of sorbic acid is 4,76, at the pH of these experiments, both water soluble sorbate ion and oil soluble sorbic acid are present in significant amounts. Sodium bisulfite is a strong inorganic reducing agent which has an acceptable lack of toxicity at the concentration... [Pg.153]

Nonaqueous Systems In nonaqueous (nonpolar) solvent systems, nitrosatlon also proceeds. In these solvents, alpha-tocopherol acts as a lipid soluble blocking agent in much the same fashion as ascorbic acid functions in the aqueous phase. Alpha-tocopherol reacts with a nitrosating agent and reduces it to nitric oxide. At the same time, alpha-tocopherol is oxidized to tocoquinone, which is the first oxidation product of vitamin E and also a normal metabolite in vivo. [Pg.199]

The human lens is rich in ascorbate, which is required for normal collagen synthesis and acts as a water-soluble antioxidant, reacting rapidly with superoxide, hydroxyl and peroxyl radicals. However, ascorbic acid can undergo auto-oxidation and, at certain concentrations, can form hydroxyl radicals with hydrogen peroxide in the presence of light and riboflavin as described above (Delaye and Tardieu, 1983 Ueno et al., 1987). [Pg.131]

Ascorbic acid (vitamin C) is one of the body s endogenous water-soluble antioxidants. Modifications on the ascorbic acid structure have led to some very interesting compounds, such as a novel series of 3-O-alkyl ascorbic-acid derivatives. They have been found to be inhibitors of lipid peroxidation (Nihro etal., 1991). This antioxidant activity is directly related to the lipophilicity of the alkyl chain, su esting that the lipid chain may anchor the antioxidant portion of the molecule in the membrane. [Pg.267]

Water-soluble vitamins removed by hemodialysis (HD) contribute to malnutrition and vitamin deficiency syndromes. Patients receiving HD often require replacement of water-soluble vitamins to prevent adverse effects. The vitamins that may require replacement are ascorbic acid, thiamine, biotin, folic acid, riboflavin, and pyridoxine. Patients receiving HD should receive a multivitamin B complex with vitamin C supplement, but should not take supplements that include fat-soluble vitamins, such as vitamins A, E, or K, which can accumulate in patients with renal failure. [Pg.394]

Since many essential nutrients (e.g., monosaccharides, amino acids, and vitamins) are water-soluble, they have low oil/water partition coefficients, which would suggest poor absorption from the GIT. However, to ensure adequate uptake of these materials from food, the intestine has developed specialized absorption mechanisms that depend on membrane participation and require the compound to have a specific chemical structure. Since these processes are discussed in Chapter 4, we will not dwell on them here. This carrier transport mechanism is illustrated in Fig. 9C. Absorption by a specialized carrier mechanism (from the rat intestine) has been shown to exist for several agents used in cancer chemotherapy (5-fluorouracil and 5-bromouracil) [37,38], which may be considered false nutrients in that their chemical structures are very similar to essential nutrients for which the intestine has a specialized transport mechanism. It would be instructive to examine some studies concerned with riboflavin and ascorbic acid absorption in humans, as these illustrate how one may treat urine data to explore the mechanism of absorption. If a compound is... [Pg.48]

The selection of an appropriate antioxidant depends on factors such as stability, toxicity, efficiency, odor, taste, compatibility with other ingredients, and distribution phenomena between the two phases. Antioxidants that give protection primarily in the aqueous phase include sodium metabisulfite, ascorbic acid, thioglycerol, and cysteine hydrochloride. Oil-soluble antioxidants include lecithin, propyl gal-late, ascorbyl palmitate, and butylated hydroxytoluene. Vitamin E has also been used, but its virtue as a natural antioxidant has been the subject of some controversy. [Pg.260]

Polymer-supported catalysts often have lower activities than the soluble catalysts because of the intraparticle diffusion resistance. In this case the immobilization of the complexes on colloidal polymers can increase the catalytic activity. Catalysts bound to polymer latexes were used in oxidation reactions, such as the Cu-catalyzed oxidation of ascorbic acid,12 the Co-catalyzed oxidation of tetralin,13 and the CoPc-catalyzed oxidation of butylphenol14 and thiols.1516 Mn(III)-porphyrin bound to colloidal anion exchange resin was... [Pg.248]


See other pages where Ascorbic acid solubility is mentioned: [Pg.1169]    [Pg.476]    [Pg.324]    [Pg.464]    [Pg.10]    [Pg.22]    [Pg.450]    [Pg.586]    [Pg.498]    [Pg.183]    [Pg.166]    [Pg.167]    [Pg.111]    [Pg.28]    [Pg.301]    [Pg.317]    [Pg.193]    [Pg.57]    [Pg.557]    [Pg.28]    [Pg.42]    [Pg.84]    [Pg.118]    [Pg.167]    [Pg.37]    [Pg.53]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Water-soluble vitamins ascorbic acid

© 2024 chempedia.info