Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous operations

Kuntz, particularly, found no echo in the academic community. The reason may have been that the idea of organometallic complex catalysts in the presence of water seemed unnatural or even perverse, although even air-stable aquocarbonyl complexes of transition metals such as rhenium [9] were known in the meantime. In addition, metal-carbon bonds are thermodynamically unstable relative to their hydrolysis products (cf. Section 2.2), although it was well known that reaction rates could be increased by a factor of up to 1011 by aqueous media [10]. In simple terms, organometallic chemistry was not ready for aqueous operation before the early 1980s. [Pg.710]

Except for transitions from heterogeneous to homogeneous catalysis, there is also common groimd for the various methodologies described here the application of SCCO2 is described in the presence of ionic liquids [32a] or of fluorous solvents [32b,c] as well in aqueous operation [33a-d] and aerobic epoxidations have been attained in fluorous biphasic systems using ionic liquids [33e]. On the other hand, ionic liquids [34] or fluorous solvents [35a,c] have been used together with aqueous operations and water-soluble polymers are the focal point of the application of... [Pg.13]

It may be noted that other homogeneous telomerization reactions of butadiene with ammonia lead to trioctadienylamines. When carried out in an aqueous two-phase operation with Pd/TPPTS, primary and secondary octadienylamines are obtained [4]. Telomerization of butadiene with formic acid or its salts using the above-mentioned process can produce 1,7-octadiene [5], Substituting isoprene for butadiene leads to dimethyloctadiene. The biphasic Pd-catalyzed telomerization of butadiene with carbohydrates in aqueous operation is also an important reaction and yields the desired ethers (Scheme 2) [6]. [Pg.224]

The capital cost of most aqueous waste treatment operations is proportional to the total flow of wastewater, and the operating cost increases with decreasing concentration for a given mass of contaminant to be removed. Thus, if two streams require different treatment operations, it makes no sense to mix them and treat both streams in both treatment operations. This will increase both capital and operating costs. Rather, the streams should be segregated and treated separately in a distributed effluent treatment system. Indeed, effective primary treatment might mean that some streams do not need biological treatment at all. [Pg.310]

The density of heavy fuels is greater than 0.920 kg/1 at 15°C. The marine diesel consumers focus close attention on the fuel density because of having to centrifuge water out of the fuel. Beyond 0.991 kg/1, the density difference between the two phases —aqueous and hydrocarbon— becomes too small for correct operation of conventional centrifuges technical improvements are possible but costly. In extreme cases of fuels being too heavy, it is possible to rely on water-fuel emulsions, which can have some advantages of better atomization in the injection nozzle and a reduction of pollutant emissions such as smoke and nitrogen oxides. [Pg.236]

The ability of living organisms to differentiate between the chemically similar sodium and potassium ions must depend upon some difference between these two ions in aqueous solution. Essentially, this difference is one of size of the hydrated ions, which in turn means a difference in the force of electrostatic (coulombic) attraction between the hydrated cation and a negatively-charged site in the cell membrane thus a site may be able to accept the smaller ion Na (aq) and reject the larger K (aq). This same mechanism of selectivity operates in other ion-selection processes, notably in ion-exchange resins. [Pg.124]

Sodium hydroxide is manufactured by electrolysis of concentrated aqueous sodium chloride the other product of the electrolysis, chlorine, is equally important and hence separation of anode and cathode products is necessary. This is achieved either by a diaphragm (for example in the Hooker electrolytic cell) or by using a mercury cathode which takes up the sodium formed at the cathode as an amalgam (the Kellner-Solvay ceW). The amalgam, after removal from the electrolyte cell, is treated with water to give sodium hydroxide and mercury. The mercury cell is more costly to operate but gives a purer product. [Pg.130]

Aqueous ammonia can also behave as a weak base giving hydroxide ions in solution. However, addition of aqueous ammonia to a solution of a cation which normally forms an insoluble hydroxide may not always precipitate the latter, because (a) the ammonia may form a complex ammine with the cation and (b) because the concentration of hydroxide ions available in aqueous ammonia may be insufficient to exceed the solubility product of the cation hydroxide. Effects (a) and (b) may operate simultaneously. The hydroxyl ion concentration of aqueous ammonia can be further reduced by the addition of ammonium chloride hence this mixture can be used to precipitate the hydroxides of, for example, aluminium and chrom-ium(III) but not nickel(II) or cobalt(II). [Pg.218]

The isolation of an aliphatic acid from its aqueous solution, particularly in the presence of metallic salts, is a tedious operation (cf. p. 56), although a few such acids, e.g., succinic acid, can be extracted with ether. Since, however, a solution of an acid or one of Its salts is admirably suited for most of the tests in this series, the isolation of the free acid is rarely necessary except as a nieans of distinguishing (as in (i)) between aliphatic and aromatic members. [Pg.349]

The theory of the process can best be illustrated by considering the operation, frequently carried out in the laboratory, of extracting an orgaiuc compound from its aqueous solution with an immiscible solvent. We are concerned here with the distribution law or partition law which, states that if to a system of two liquid layers, made up of two immiscible or slightly miscible components, is added a quantity of a third substance soluble in both layers, then the substance distributes itself between the two layers so that the ratio of the concentration in one solvent to the concentration in the second solvent remains constant at constant temperature. It is assumed that the molecular state of the substance is the same in both solvents. If and Cg are the concentrations in the layers A and B, then, at constant temperature ... [Pg.44]

Acetates may also be prepared by adding acetic anhydride to somewhat dilute solutions of compounds containing hydroxyl (or amino) groups in aqueous caustic alkahs. The amount of alkali used should suffice to leave the hquid shghtly basic at the end of the operation, so much ice should be added that a little remains unmelted, and the acetic anhydride should be added quickly. [Pg.682]

Although many problems still remain to be overcome to make the process practical (not the least of which is the question of the corrosive nature of aqueous HBr and the minimization of formation of any higher brominated methanes), the selective conversion of methane to methyl alcohol without going through syn-gas has promise. Furthermore, the process could be operated in relatively low-capital-demand-ing plants (in contrast to syn-gas production) and in practically any location, making transportation of natural gas from less accessible locations in the form of convenient liquid methyl alcohol possible. [Pg.212]

The operation of the nitronium ion in these media was later proved conclusively. "- The rates of nitration of 2-phenylethanesulphonate anion ([Aromatic] < c. 0-5 mol l i), toluene-(U-sulphonate anion, p-nitrophenol, A(-methyl-2,4-dinitroaniline and A(-methyl-iV,2,4-trinitro-aniline in aqueous solutions of nitric acid depend on the first power of the concentration of the aromatic. The dependence on acidity of the rate of 0-exchange between nitric acid and water was measured, " and formal first-order rate constants for oxygen exchange were defined by dividing the rates of exchange by the concentration of water. Comparison of these constants with the corresponding results for the reactions of the aromatic compounds yielded the scale of relative reactivities sho-wn in table 2.1. [Pg.10]

Note 2. All operations during the aqueous work-up must be carried out without any delay the product is probably water-sensitive. [Pg.44]

In the flask were placed a solution of 7 g of anhydrous LiBr in 50 ml of dry THF, 0.40 mol of the allenic bromide (see Chapter VI, Exp. 31) and 0.50 mol of finely powdered copper(I) cyanide. The mixture was swirled by hand and the temperature rose in about 15 min to 60°C. It was kept between 55 and 60°C by occasional cooling in a water-bath. When the exothermic reaction had subsided, the flask was warmed for an additional 30 min at 55-60°C and the brown solution was then poured into a vigorously stirred solution of 30 g of NaCN and 100 g of NH,C1 in 300 ml of water, to which 150 ml of diethyl ether had been added. During this operation the temperature was kept below 20 c. The reaction flask was subsequently rinsed with the NaCN solution. After separation of the layers the aqueous layer was extracted with ether. The extracts were dried over magnesium sulfate and then concentrated... [Pg.226]

It IS not possible to tell by inspection whether the a or p pyranose form of a par ticular carbohydrate predominates at equilibrium As just described the p pyranose form IS the major species present m an aqueous solution of d glucose whereas the a pyranose form predominates m a solution of d mannose (Problem 25 8) The relative abundance of a and p pyranose forms m solution depends on two factors The first is solvation of the anomeric hydroxyl group An equatorial OH is less crowded and better solvated by water than an axial one This effect stabilizes the p pyranose form m aqueous solution The other factor called the anomeric effect, involves an electronic interaction between the nng oxygen and the anomeric substituent and preferentially stabilizes the axial OH of the a pyranose form Because the two effects operate m different directions but are com parable m magnitude m aqueous solution the a pyranose form is more abundant for some carbohydrates and the p pyranose form for others... [Pg.1040]

The pH value is defined for an aqueous solution in an operational (arbitrary but reproducible) manner according to the Bates-Guggenheim convention ... [Pg.942]

Small amounts of propionitrile and bis(cyanoethyl) ether are formed as by-products. The hydrogen ions are formed from water at the anode and pass to the cathode through a membrane. The catholyte that is continuously recirculated in the cell consists of a mixture of acrylonitrile, water, and a tetraalkylammonium salt the anolyte is recirculated aqueous sulfuric acid. A quantity of catholyte is continuously removed for recovery of adiponitrile and unreacted acrylonitrile the latter is fed back to the catholyte with fresh acrylonitrile. Oxygen that is produced at the anodes is vented and water is added to the circulating anolyte to replace the water that is lost through electrolysis. The operating temperature of the cell is ca 50—60°C. Current densities are 0.25-1.5 A/cm (see Electrochemical processing). [Pg.221]

The extract is vacuum-distilled ia the solvent recovery column, which is operated at low bottom temperatures to minimise the formation of polymer and dimer and is designed to provide acryUc acid-free overheads for recycle as the extraction solvent. A small aqueous phase in the overheads is mixed with the raffinate from the extraction step. This aqueous material is stripped before disposal both to recover extraction solvent values and minimise waste organic disposal loads. [Pg.154]

It is possible to dispense with the extraction step if the oxidation section is operated at high propylene concentrations and low steam levels to give a concentrated absorber effluent. In this case, the solvent recovery column operates at total organic reflux to effect a2eotropic dehydration of the concentrated aqueous acryflc acid. This results in a reduction of aqueous waste at the cost of somewhat higher energy usage. [Pg.154]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]


See other pages where Aqueous operations is mentioned: [Pg.370]    [Pg.370]    [Pg.274]    [Pg.119]    [Pg.1916]    [Pg.228]    [Pg.448]    [Pg.44]    [Pg.281]    [Pg.485]    [Pg.564]    [Pg.567]    [Pg.47]    [Pg.164]    [Pg.168]    [Pg.48]    [Pg.60]    [Pg.72]    [Pg.2]    [Pg.47]    [Pg.50]    [Pg.56]    [Pg.84]    [Pg.132]    [Pg.168]    [Pg.428]    [Pg.631]    [Pg.1145]    [Pg.54]    [Pg.76]    [Pg.136]   
See also in sourсe #XX -- [ Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 ]




SEARCH



© 2024 chempedia.info