Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic interaction, between

As a consequence of the rigid face-to-face orientation, there are strong electronic interactions between the benzene rings in the dibenzo-anellated isodrin derivative. Irradiation with 254-nm UV light gave rise to a 7 3 equilibrium mixture of the educt with the [6 -I- 6]cycloaddition isomer. At an irradiation wavelength of 300 nm the cycloaddition wa completely reversed. [Pg.336]

It IS not possible to tell by inspection whether the a or p pyranose form of a par ticular carbohydrate predominates at equilibrium As just described the p pyranose form IS the major species present m an aqueous solution of d glucose whereas the a pyranose form predominates m a solution of d mannose (Problem 25 8) The relative abundance of a and p pyranose forms m solution depends on two factors The first is solvation of the anomeric hydroxyl group An equatorial OH is less crowded and better solvated by water than an axial one This effect stabilizes the p pyranose form m aqueous solution The other factor called the anomeric effect, involves an electronic interaction between the nng oxygen and the anomeric substituent and preferentially stabilizes the axial OH of the a pyranose form Because the two effects operate m different directions but are com parable m magnitude m aqueous solution the a pyranose form is more abundant for some carbohydrates and the p pyranose form for others... [Pg.1040]

In Rhodamine 6G, also sold as Rhodamine F5G [989-38-8] (15), the caiboxy estei gioup prevents fiee rotation of the lower phenyl group. Its position is roughly perpendicular to the plane of the other three rings. Retention of color strength is good because there is less electronic interaction between the lower ring and the rest of the molecule. [Pg.298]

Exocyclic unsaturation can stabilize small ring heterocycles. In three-membered rings it is difficult to separate the contributions from increased angle strain and from electronic interactions between the unsaturation and the heteroatom. In four-membered rings such separation has been done 74PMH(6)199, p. 235). The CRSEs change from oxetane... [Pg.3]

Whereas the quasi-chemical theory has been eminently successful in describing the broad outlines, and even some of the details, of the order-disorder phenomenon in metallic solid solutions, several of its assumptions have been shown to be invalid. The manner of its failure, as well as the failure of the average-potential model to describe metallic solutions, indicates that metal atom interactions change radically in going from the pure state to the solution state. It is clear that little further progress may be expected in the formulation of statistical models for metallic solutions until the electronic interactions between solute and solvent species are better understood. In the area of solvent-solute interactions, the elastic model is unfruitful. Better understanding also is needed of the vibrational characteristics of metallic solutions, with respect to the changes in harmonic force constants and those in the anharmonicity of the vibrations. [Pg.143]

Cations are by no means the only species where the effects of hyperconjugative delocalization reveal themselves in such a striking manner. Similar effects exist in neutral systems or in anions. For instance, the normal propyl anion should tend to be eclipsed (E) since in this manner the molecule would optimize the 4-electron interactions between the ethyl group t orbital and the p orbital which carries the electron pair. In the bisected conformation, where ttchs and ttchs have both been raised in energy, the four-electron, destabilizing (see Section 1.7, rule 2) p ->7r interaction is stronger than in the eclipsed conformation. At the same time the two-electron, stabilizing p ->ir interaction is weaker than in the eclipsed conformation. Both effects favor the eclipsed conformation. [Pg.34]

The aldehyde is orientated in such a way that steric and electronic interactions between the carbonyl substituents and the sulfoxide are minimized. [Pg.660]

Electronic Interaction between Metallic Catalysts and Chemisorbed Molecules R. Suhrmann... [Pg.423]

Steric repulsions come from two orbital-four electron interactions between two occupied orbitals. Facially selective reactions do occur in sterically unbiased systems, and these facial selectivities can be interpreted in terms of unsymmetrical K faces. Particular emphasis has been placed on the dissymmetrization of the orbital extension, i.e., orbital distortions [1, 2]. The orbital distortions are described in (Chapter Orbital Mixing Rules by Inagaki in this volume). Here, we review the effects of unsymmetrization of the orbitals due to phase environment in the vicinity of the reaction centers [3]. [Pg.130]

Secondary orbital interaction had been proposed to explain predominant formation of endo attack prodncts in Diels Alder reaction of cyclopentadiene and dienophiles by Hoffmann and Woodward [22]. According to this rnle, the major stereoisomer in Diels-Alder reactions is that it is formed through a maximum accumulation of double bonds. In the Diels-Alder reactions, secondary orbital interaction consists of a stabilizing two-electron interaction between the atoms not involved in the formation or cleavage of o bonds (Scheme 19). [Pg.194]

Overman, Hehre and coworkers also reported anti tt-facial selectivity in Diels-Alder reactions of the vinylcyclopentenes 73,74 and 4,5-dihydro-3-ethynylthiophen 5 -oxide 75. They attributed the selectivity to destabilizing electronic interaction between the allylic heteroatom and dienophile in the syn attack transition state (Scheme 43) [38],... [Pg.210]

In this figure, the activation energies of N2 dissociation are compared for the different reaction centers the (111) surface structure ofan fee crystal and a stepped surface. Activation energies with respect to the energy of the gas-phase molecule are related to the adsorption energies of the N atoms. As often found for bond activating surface reactions, a value of a close to 1 is obtained. It implies that the electronic interactions between the surface and the reactant in the transition state and product state are similar. The bond strength of the chemical bond... [Pg.6]

Since it is well known that cyclopropane rings are better electron donors than dimethylmethylene groups, especially towards electron-deficient or electron-attracting centers [9,10], in macrocycles such as 48 it would be expected that the spirocyclopropane rings rather than the dimethylmethylene groups in [nlpericyclines would more efficiently transmit the electronic interaction between the triple bonds (Fig. 2). [Pg.8]

Excited state electron transfer also needs electronic interaction between the two partners and obeys the same rules as electron transfer between ground state molecules (Marcus equation and related quantum mechanical elaborations [ 14]), taking into account that the excited state energy can be used, to a first approximation, as an extra free energy contribution for the occurrence of both oxidation and reduction processes [8]. [Pg.163]

To explore the possibility of electronic Interaction between the reduced titanium oxide and Pt, 1 ML of Pt was deposited on both fully oxidized and partially reduced T102. The reduced sample was prepared by Ar" " sputtering of the TIO2 substrate prior to metal deposition. Introducing reduced Tl centers at the Pt-Tl Interface. [Pg.84]

We have shown that the Fe or Fe-Co/Zeollte systems with a vs H/T type results provide a unique probe for obtaining particle sizes (3) of the metal clusters, and can be extended for computing a particle-size distribution. In addition, electronic interactions between the Bronsted acid sites and the Fe species can be elucidated. [Pg.516]

The electron interaction between nanosized gold particles and iron oxide support is only one factor which determines the properties of the gold/oxide system. For instance, in the Au/FeO,c/Si02/Si(l 0 0) model sample the depth profile (after successive Ar ion bombardment at a... [Pg.100]

The total Hamiltonian is the sum of the two terms H = H + //osc- The way in which the rate constant is obtained from this Hamiltonian depends on whether the reaction is adiabatic or nonadiabatic, concepts that are explained in Fig. 2.2, which shows a simplified, one-dimensional potential energy surface for the reaction. In the absence of an electronic interaction between the reactant and the metal (i.e., all Vk = 0), there are two parabolic surfaces one for the initial state labeled A, and one for the final state B. In the presence of an electronic interaction, the two surfaces split at their intersection point. When a thermal fluctuation takes the system to the intersection, electron transfer can occur in this case, the system follows the path... [Pg.35]

As a result of strong electronic interactions between the two metalloporphyrin units, there is a substantial uncertainty in assigning oxidation states in mixed-valence group 2 complexes of redox-active metals, such as Co. Thus, although reduced neutral C02 derivatives can be reasonably well described as those of Co the location (metal versus porphyrin) of the electron hole(s) in the singly and doubly oxidized derivatives is not known definitively, and may be very sensitive to the medium [LeMest et al., 1996, 1997]. For example, in benzonitrile, the UV-vis spectmm of [(FTF4)Co2]" ... [Pg.665]

Fig. 2. Electronic structure of biferrocene (2) (a) energy diagram (b) illustration of large electronic interaction between dx2 >2 orbitals (e2 ) of ferrocene units through pz orbitals of Cp rings (54). Fig. 2. Electronic structure of biferrocene (2) (a) energy diagram (b) illustration of large electronic interaction between dx2 >2 orbitals (e2 ) of ferrocene units through pz orbitals of Cp rings (54).

See other pages where Electronic interaction, between is mentioned: [Pg.361]    [Pg.18]    [Pg.62]    [Pg.138]    [Pg.227]    [Pg.508]    [Pg.84]    [Pg.265]    [Pg.389]    [Pg.410]    [Pg.489]    [Pg.40]    [Pg.14]    [Pg.165]    [Pg.516]    [Pg.681]    [Pg.389]    [Pg.410]    [Pg.66]    [Pg.85]    [Pg.98]    [Pg.172]    [Pg.281]    [Pg.335]    [Pg.32]    [Pg.665]    [Pg.292]    [Pg.297]    [Pg.49]    [Pg.66]   


SEARCH



Electronic interactions

© 2024 chempedia.info