Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

And the Wacker process

In spite of some declining industrial interest, the last 5 years have seen an unusual academic interest in the catalytic properties of the metal carbonyls. This has been part of a wider surge of interest in the organometallic chemistry of the transition metals and its application to homogeneous catalysis. Reactions such as Ziegler polymerization, the Oxo reaction, and the Wacker process are but a few of the many reactions of unsaturated molecules catalyzed in the coordination sphere of transition metal complexes (20). These coordination catalyses have much in common, and the study of one is often pertinent to the study of the others. [Pg.120]

Commercial uses for palladium catalysts include hydrocracking, vinly acetate production, and the Wacker process, which is used to convert olefins into aldehydes or ketones. The best known example is the conversion of ethylene to acetaldehyde. The process is catalyzed by [PdCm, which is reduced to palladium(O) as the olefin is converted fo fhe aldehyde. The mefal is reoxidized with CuCl2. The homogeneous system is attractive here because the product is easy to separate from the catalyst. This is an advantage that heavier products may not enjoy in homogeneous systems in which separation would be more... [Pg.332]

Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

In the Wacker process, the reaction is actually carried out in dilute HCl at a high concentration of chloride ion and an elevated temperature. The high concentration of CUCI2 shifts the equilibrium further to the right. [Pg.20]

Formation of acetaldehyde and metallic Pd by passing ethylene into an aqueous solution of PdCl2 was reported by Phillips in 1894 15] and used for the quantitative analysis of Pd(II)[16], The reaction was highlighted after the industrial process for acetaldehyde production from ethylene based on this reaetion had been developed[l,17,18]. The Wacker process (or reaction) involves the three unit reactions shown. The unique feature in the Wacker process is the invention of the in situ redox system of PdCl2-CuCl2. [Pg.22]

Extensive studies on the Wacker process have been carried out in industrial laboratories. Also, many papers on mechanistic and kinetic studies have been published[17-22]. Several interesting observations have been made in the oxidation of ethylene. Most important, it has been established that no incorporation of deuterium takes place by the reaction carried out in D2O, indicating that the hydride shift takes place and vinyl alcohol is not an intermediate[l,17]. The reaction is explained by oxypailadation of ethylene, / -elimination to give the vinyl alcohol 6, which complexes to H-PdCl, reinsertion of the coordinated vinyl alcohol with opposite regiochemistry to give 7, and aldehyde formation by the elimination of Pd—H. [Pg.22]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Whereas this reaction was used to oxidize ethylene (qv) to acetaldehyde (qv), which in turn was oxidized to acetic acid, the direct carbonylation of methanol (qv) to acetic acid has largely replaced the Wacker process industrially (see Acetic acid and derivatives). A large number of other oxidation reactions of hydrocarbons by oxygen involve coordination compounds as detailed elsewhere (25). [Pg.171]

The Wacker process for the oxidation of ethylene to acetaldehyde with PdCb/CuCb at 100°C (212°F) with 95 percent yield and 95 to 99 percent conversion per pass. [Pg.2092]

A common property of coordinated alkenes is their susceptibility to attack by nucleophiles such as OH , OMe , MeC02, and Cl , and it has long been known that Zeise s salt is slowly attacked by non-acidic water to give MeCHO and Pt metal, while corresponding Pd complexes are even more reactive. This forms the basis of the Wacker process (developed by J. Smidt and his colleagues at Wacker Chemie, 1959-60) for converting ethene (ethylene) into ethanal (acetaldehyde) — see Panel overleaf. [Pg.1171]

With the growing prominence of the petrochemicals industry this technology was, in turn, replaced by direct air oxidation of naphtha or butane. Both these processes have low selectivities but the naphtha route is still used since it is a valuable source of the co-products, formic and propanoic acid. The Wacker process, which uses ethylene as a feedstock for palladium/copper chloride catalysed synthesis of acetaldehyde, for which it is still widely used (Box 9.1), competed with the direct oxidation routes for a number of years. This process, however, produced undesirable amounts of chlorinated and oxychlorinated by-products, which required separation and disposal. [Pg.263]

Cu(rr) compounds are frequently used in conjunction with Pd(I[) in the oxidation of olefins in the Wacker process. Their role has been viewed as that of catalyst for autoxidation of Pd metal back to Pd(II). Dozono and Shiba report the rate of oxidation of ethylene by a PdCl2-CuCl2 couple to be given by... [Pg.340]

Siegbahn, P. E. M., 1996b, Two, Three, and Four Water Chain Models for the Nucelophilic Addition Step in the Wacker Process , J. Phys. Chem., 100, 14672. [Pg.301]

The Wacker process was developed in the late 1950s and is not widely used because other processes are more effective. [Pg.800]

Palladium-catalyzed oxidation of hydrocarbons has been a matter of intense research for about four decades. The field was initiated by the development of the aerobic oxidation of ethylene to acetaldehyde catalyzed by palladium chloride and co-catalyzed by cupric chloride (the Wacker process, equation l)1. [Pg.653]

Hoechst-Uhde (2) A variation of the Wacker process, which makes vinyl acetate from ethylene and acetic acid. The catalyst is an aqueous solution of palladium and copper chlorides. [Pg.130]

The naming of this process has been confused because of various corporate relationships. The basic invention was created in 1957 at the Consortium fur Elektrochemische Industrie, Munich, a wholly owned subsidiary of Wacker-Chemie. It has therefore been called both the Wacker process and the Consortium process. But for many years, Wacker-Chemie has had a close relationship with Farbwerke Hoechst and the latter company has participated in some of the development and licensing activities, so two other names have come to be used Wacker-Hoechst and Hoechst-Wacker. The live inventors (J. Schmidt, W. Hafner, J. Sedlmeier, R. Jira, and R. Riittinger) received the Dechema prize in 1962 for this invention. The acetaldehyde process was first operated commercially in 1960. In 1997, this process was used in making 85 percent of the world s production of acetaldehyde. Although Wacker-Chemie still makes vinyl acetate, it no longer uses the Wacker process to do so. [Pg.286]

Equation 11 occurs via 3-H abstraction by Pd(II) [33,40-42] Eq. 12 is related to the water-gas shift reaction (WGSR) [43-45] Eq. 13 and Eq. 14 are related to the oxidation of C2H4 to acetaldehyde by Pd(II) in the presence of H20 in the Wacker process [46]. Equation 15 has been shown to occur with octamethylferrocene-phosphine complexes [47]. Formic acid can also be a source of hydride species [48]. [Pg.137]

Acetaldehyde is the product of the Wacker process. At the end of the fifties oxidation of ethene to ethanal replaced the addition of water to acetylene, because the acetylene/coal-based chemistry became obsolete, and the ethene/petrochemistry entered the commercial organic chemicals scene. The acetylene route involved one of the oldest organometallics-mediated catalytic routes started up in the 1920s the catalyst system comprised mercury in sulfuric acid. Coordination of acetylene to mercury(II) activates it toward nucleophilic attack of water, but the reaction is slow and large reactor volumes of this toxic catalyst were needed. An equally slow related catalytic process, the zinc catalysed addition of carboxylic acids to acetylene, is still in use in paint manufacture. [Pg.320]

The formation of carbon-carbon bonds by palladium-promoted reactions has been widely used in organic synthesis [114-116]. A major advantage is that most of these coupling reactions can be performed with catalytic amounts of palladium. Palladium(II)-catalyzed reactions, e.g., the Wacker process, are distinguished from palladium(O)-catalyzed reactions, e.g., the Heck reaction, since they require oxidative regeneration of the catalytically active palladium(II) species in a separate step [117]. Several groups have applied palladium-mediated and -catalyzed coupling reactions to the construction of the carbazole framework. [Pg.135]

The more expedient, direct catalytic oxidation route to acetone was developed in Germany in the 1960s. If you had been in charge of building the acetone business from scratch, you d probably not have built any IPA-to-acetone plants if you had known about the Wacker process. It s a catalytic oxidation of propylene at 200—250°F and 125—200 psi over palladium chloride with a cupric (copper) chloride promoter. The yields are 91-94%. The hardware for the Wacker process is probably less than for the combined IPA/acetone plants. But once the latter plants were built, the economies of the Wacker process were not sufficient to shut them down and start all over. So the new technology never took hold in the United States. [Pg.243]

With reaction conditions of 200-225°F, 150—225 psi, and a palladium chloride-cupric chloride catalyst, MEK yields are 80-90%. The operating costs of the Wacker process for MEK (and acetone and several other petrochemicals as well) are relatively low. But the plant Is made of more expensive materials. Because of the corrosive nature of the catalyst solution, critical vessels, and the piping are titanium-based.(chats expensive ), and the reactor is rubber-lined, acid-resistant brick. ... [Pg.246]

Taken together, these initial findings may eventually lead to other recyclable DECS having either modulated activities or selectivities arising from steric effects. Moreover, other catalytic processes requiring a co-catalyst, such as the Wacker process, may be particularly amenable to dendrimer-based catalytic systems because (as discussed in Sect. 2.4.2) the dendrimer interior can accommodate two or more catalytic moieties for example, a metal particle (e. g., Pd) and a metal ion (e. g., Cu +), two different metal ions, or two different zero-valent metal. [Pg.126]


See other pages where And the Wacker process is mentioned: [Pg.413]    [Pg.467]    [Pg.456]    [Pg.317]    [Pg.17]    [Pg.413]    [Pg.467]    [Pg.456]    [Pg.317]    [Pg.17]    [Pg.295]    [Pg.19]    [Pg.23]    [Pg.559]    [Pg.53]    [Pg.224]    [Pg.156]    [Pg.1538]    [Pg.74]    [Pg.156]    [Pg.169]    [Pg.679]    [Pg.913]    [Pg.57]    [Pg.322]    [Pg.282]    [Pg.10]   
See also in sourсe #XX -- [ Pg.1538 ]




SEARCH



The Wacker Process

The Wacker and Monsanto Processes

Wacker

Wacker process

© 2024 chempedia.info