Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene coordination

Another reaction in the last step is the syn elimination ofhydrogen with Pd as H—Pd—X, which takes place with alkyl Pd complexes, and the Pd hydride and an alkene are formed. The insertion of an alkene into Pd hydride and the elimination of, (3-hydrogen are reversible steps. The elimination of, 3-hydrogen generates the alkene, and both the hydrogen and the alkene coordinate to Pd, increasing the coordination number of Pd by one. Therefore, the / -elimination requires coordinative unsaturation on Pd complexes. The, 3-hydrogen eliminated should be syn to Pd. [Pg.9]

Alkenes coordinated by Pd(II) are attacked by carbon nucleophiles, and carbon-carbon bond formation takes place. The reaction of alkenes with carbon nucleophiles via 7r-allylpalladium complexes is treated in Section 3.1. [Pg.47]

Stable transition-metal complexes may act as homogenous catalysts in alkene polymerization. The mechanism of so-called Ziegler-Natta catalysis involves a cationic metallocene (typically zirconocene) alkyl complex. An alkene coordinates to the complex and then inserts into the metal alkyl bond. This leads to a new metallocei e in which the polymer is extended by two carbons, i.e. [Pg.251]

RhCl(PPhi)i as a homogenous hydrogenation catalyst [44, 45, 52]. The mechanism of this reaction has been the source of controversy for many years. One interpretation of the catalytic cycle is shown in Figure 2.15 this concentrates on a route where hydride coordination occurs first, rather than alkene coordination, and in which dimeric species are unimportant. (Recent NMR study indicates the presence of binuclear dihydrides in low amount in the catalyst system [47].)... [Pg.95]

This forms individual hydrogen atoms adsorbed to the surface of the metal. These hydrogen atoms are now available for addition across the alkene. The addition reaction begins when the alkene coordinates with the metal surface ... [Pg.256]

The high enantioselectivity again can be rationalized by enantioface-selective alkene coordination in 63 (Fig. 35). The olefin moiety is expected to bind trans to the upper imidazoline moiety [70,73] thereby releasing the catalyst strain. Coordination at this position may, in principal, afford four different isomers assuming the stereoelectronically preferred perpendicular orientation of the alkene and the Pt(II) square plane. In the coordination mode shown, steric repulsion between both olefin substituents and the ferrocene moiety is minimized. Outer-sphere attack of the indole core results in the formation of the product s stereocenter. [Pg.162]

Nickel(O) reacts with the olefin to form a nickel(0)-olefin complex, which can also coordinate the alkyl aluminum compound via a multicenter bond between the nickel, the aluminum and the a carbon atom of the trialkylaluminum. In a concerted reaction the aluminum and the hydride are transferred to the olefin. In this mechanistic hypothesis the nickel thus mostly serves as a template to bring the olefin and the aluminum compound into close proximity. No free Al-H or Ni-H species is ever formed in the course of the reaction. The adduct of an amine-stabihzed dimethylaluminum hydride and (cyclododecatriene)nickel, whose structure was determined by X-ray crystallography, was considered to serve as a model for this type of mechanism since it shows the hydride bridging the aluminum and alkene-coordinated nickel center [31]. [Pg.52]

Consequently, it is I ICo(CN)s3 that functions as a catalyst in hydrogenation processes. In the first step of the process shown in Figure 22.9, the alkene coordinates to HCo(CN)s3 as one hydrogen atom is added to the molecule so that only one double bond remains. The monoene is bonded to the cobalt in rf fashion. In the second step, another HCo(CN)53- transfers hydrogen to the alkene, which undergoes reductive elimination and leaves, having been converted to 1-butene. [Pg.796]

By the time the concentration of monomer is low, the back-skip of the polymer chain to the less-hindered site is faster than the formation of the high-energy alkene coordinated intermediate (IV). For this reason, at low propene concentrations and elevated temperatures isotactic sequences are formed. The probability of monomer coordination at the aspecific site (IV) is enhanced when the propene concentration increases. The consequence is that single stereoerrors [mrrm] are introduced in the isotactic polymer chain. 13C-NMR was able to prove the mechanism because a... [Pg.52]

We now consider some simple examples of the more common alkene coordination mode that is intermediate between the limiting extremes of weak dative coordination and strong metallacyclopropane insertion. Our model systems are the simple ethylene adducts of the group 10 metals Ni, Pd, and Pt. Because these metals exhibit... [Pg.505]

Asymmetry in metal-alkene coordination plays a critical role in asymmetric catalysis, with implications far beyond the scope of the present treatment. An instructive example is provided by catalytic asymmetric hydrogenation of enamides,... [Pg.508]

It is useful to consider the possible formulations of alkyne and allyl bonding to metals in terms of Green s MLX formalism.64 Coordination of an alkyne in a simple dative two-electron fashion is denoted ML, whereas the limit of metallacyclobutene formation is denoted MX2. For the allyl ligand, three imaginable coordinations are possible simple q1 coordination is denoted MX, butq3 coordination can encompass both MLX (one a bond plus a dative alkene coordination) and MX3 (three M—C a bonds). [Pg.529]

An informative set of calculations was carried out by Brandt et al, coupled to experimental studies that demonstrated first-order dependence of the turnover rate on both catalyst and H2, and zero-order dependence on alkene (a-methyl-(E)-stilbene) concentration [71]. The incentive for this investigation was the absence of any characterized advanced intermediates on the catalytic pathway. As a result of the computation, a catalytic cycle (for ethene) was proposed in which H2 addition to iridium was followed by alkene coordination and migratory insertion. The critical difference in this study was the proposal that a second molecule of H2 is involved that facilitates formation of the Ir alkylhydride intermediate. In addition, the reductive elimination of R-H and re-addition of H2 are concerted. This postulate was subsequently challenged. For hydrogenation of styrene by the standard Pfaltz catalyst, ES-MS analysis of the intermediates formed at different stages in the catalytic cycle revealed only Ir(I) and Ir(III) species, supporting a cycle (at least under low-pressure conditions in the gas... [Pg.1096]

There are a few exceptions amongst the cationic complexes that also undergo oxidative addition of dihydrogen prior to alkene complexation. Alkylphosphines, raising the electron density on the rhodium cation, have been shown to belong to these exceptions, which seems logical [16] electron-rich phosphine complexes can undergo oxidative addition of H2 before the alkene coordinates to the rhodium metal. [Pg.86]

Two possible scenarios exist which are consistent with this rate equation. Rate determining alkene coordination by 3c and 3t followed by rapid alkene insertion into the Rh-H bond is one possibility. An equally valid alternative explanation for the observed kinetics involves rate determining migratory... [Pg.146]

Hydroformylation results in Table 8.3 show that, with the exception of ligands 28 and 30, the rate of the reaction increases with decreasing phosphine basicity. An explanation for the deviant behaviour of 28 and 29 can be that catalyst formation is incomplete or deactivation of the catalyst occurs. Decreasing phosphine basicity facilitates CO dissociation from the (diphosphine)Rh(CO)2H complex and enhances alkene coordination to form the (diphosphine)Rh(CO)H(alkene) complex, and therefore, the reaction rate increases. [Pg.158]


See other pages where Alkene coordination is mentioned: [Pg.303]    [Pg.235]    [Pg.274]    [Pg.161]    [Pg.379]    [Pg.225]    [Pg.267]    [Pg.277]    [Pg.280]    [Pg.501]    [Pg.536]    [Pg.13]    [Pg.13]    [Pg.25]    [Pg.103]    [Pg.367]    [Pg.726]    [Pg.386]    [Pg.252]    [Pg.166]    [Pg.168]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.182]    [Pg.114]    [Pg.329]    [Pg.332]    [Pg.25]    [Pg.143]    [Pg.147]    [Pg.159]    [Pg.166]    [Pg.221]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Coordinated alkene

© 2024 chempedia.info