Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analysis techniques determination

This section is subdivided on the basis of whether the analysis is made directly on the solid soil sample or on a solution after a pretreatment stage. A further division is made on whether the analysis technique determines the total amount present or is capable of distinguishing between chemical species. [Pg.2013]

Knowledge of information depth obtained from a surface analysis technique determines its wide use in surface analysis. Only a few attempts have so far been made to gather information depth based on APS this is one of the reasons why APS has not become a popular technique for surface analysis. The information depth obtained from APS technique correlates well with that determined by AES. [Pg.4632]

Aspect Ratio. The aspect ratio of mica is determined with electromicroscopic image analysis techniques. [Pg.291]

Sophisticated stmctural analysis techniques make it possible to determine both the amount and exact orientation of reinforcement that the product wQl need to meet the critical stresses in actual service. Hybrid reinforcement systems containing different fiber compositions with different properties are being increasingly used. For example, hybrid carbon and glass fiber automotive drive shafts are in commercial use. [Pg.96]

Specific titles within each of the operating phases can be determined using a job task analysis in concert with the technology package and process safety information. Appendix D, ISD Model and Job Task Analysis Techniques, provides basic guidance in this useful method. [Pg.85]

The calculated loading stress, L, on a component is not only a function of applied load, but also the stress analysis technique used to find the stress, the geometry, and the failure theory used (Ullman, 1992). Using the variance equation, the parameters for the dimensional variation estimates and the applied load distribution, a statistical failure theory can then be formulated to determine the stress distribution, f L). This is then used in the SSI analysis to determine the probability of failure together with material strength distribution f S). [Pg.191]

The chemical composition of particulate pollutants is determined in two forms specific elements, or specific compounds or ions. Knowledge of their chemical composition is useful in determining the sources of airborne particles and in understanding the fate of particles in the atmosphere. Elemental analysis yields results in terms of the individual elements present in a sample such as a given quantity of sulfur, S. From elemental analysis techniques we do not obtain direct information about the chemical form of S in a sample such as sulfate (SO/ ) or sulfide. Two nondestructive techniques used for direct elemental analysis of particulate samples are X-ray fluorescence spectroscopy (XRF) and neutron activation analysis (NAA). [Pg.205]

Electron Probe X-Ray Microanalysis (EPMA) is a spatially resolved, quantitative elemental analysis technique based on the generation of characteristic X rays by a focused beam of energetic electrons. EPMA is used to measure the concentrations of elements (beryllium to the actinides) at levels as low as 100 parts per million (ppm) and to determine lateral distributions by mapping. The modern EPMA instrument consists of several key components ... [Pg.175]

Since the 1950s XRF has been used extensively for the analysis of solids, powders, and liquids. The technique was extended to analyze thin-film materials in the 1970s. XRF can be used routinely for the simultaneous determination of elemental composition and thickness of thin films. The technique is nondesuuctive, rapid, precise, and potentially very accurate. The results are in good agreement with other elemental analysis techniques including wet chemical, electron-beam excitation techniques, etc. [Pg.338]

The molecular weight and molecular weight distribution may be determined by conventional techniques. As the resins are of comparatively low molecular weight it is possible to measure this by ebullioscopic and by end-group analysis techniques. [Pg.750]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

From the preceding discussion, it is evident that surface analysis techniques have contributed greatly to the understanding of adhesion related phenomena. Surface analysis has made it possible for adhesion scientists to determine the composition... [Pg.313]

This chapter discusses overall safety analysis techniques lor evaluating production facilities, describes the concepts used to determine where safety shutdown sensors are required, and provides background and insight into the concept of a Safety and Environmental Management Program. [Pg.386]

E. A. Hoogendoom and P. van Zoonen, Coupled-column reversed phase liquid chromatography as a versatile technique for the determination of polar pesticides in Environmental Analysis - Techniques, Applications and quality assurance, Barcelo D (Ed.), Vol. 13, Elsevier, Amsterdam, pp. 181-196 (1993). [Pg.292]

A number of techniques are available for determining the composition of a solid surface. Since the surface plays an important role in many processes, such as oxidation, discoloration, wear, and adhesion, these techniques have gained importance. The choice of a surface analysis technique depends upon such important considerations as sampling depth, surface information, analysis environment, and sample suitability. Different... [Pg.517]

All of the analysis techniques discussed to this point have been methods to determine if a potential problem exists within the machine-train or its associated systems. Failuremode analysis is the next step required to specifically pinpoint the failure mode and identify which machine-train component is degrading. [Pg.733]

Lubricating oil analysis, as the name implies, is an analysis technique that determines the condition of lubricating oils used in mechanical and electrical equipment. It is not a tool for determining the operating condition of machinery. Some forms of lubricating oil analysis will provide an accurate quantitative breakdown of individual chemical elements, both oil additive and contaminates, contained in the oil. A comparison of the amount of trace metals in successive oil samples can indicate wear patterns of oil wetted parts in plant equipment and will provide an indication of impending machine failure. [Pg.800]

The opportunity for creative design by viewing many imaginative variations would be blunted if each variation introduced a new set of doubts as to its ability to withstand whatever stress might be applied. From this point of view the development of computer graphics has to be accompanied by an analysis technique capable of determining stress levels, regardless of the shape of the product. This need is met by FEA. [Pg.128]

The designer must be aware that as the degree of anisotropy increases, the number of constants or moduli required to describe the material increases with isotropic construction one could use the usual independent constants to describe the mechanical response of materials, namely, Young s modulus and Poisson s ratio (Chapter 2). With no prior experience or available data for a particular product design, uncertainty of material properties along with questionable applicability of the simple analysis techniques generally used require end use testing of molded products before final approval of its performance is determined. [Pg.508]

The NC samples were supplied from plant production lots and the listed nitrogen contents under Chemical Analysis were determined by a nitrometer technique these values are usually precise to within a few hundredths of 1%. The... [Pg.358]

One final note While the techniques used here were applied to control temperature In large, semi-batch polymerization reactors, they are by no means limited to such processes. The Ideas employed here --designing pilot plant control trials to be scalable, calculating transfer functions by time series analysis, and determining the stochastic control algorithm appropriate to the process -- can be applied In a variety of chemical and polymerization process applications. [Pg.486]

Sensor-based methods. Whilst many methods use sensors, the simplest being temperature measurement, this terminology is often used to cover viscosity, pH, oxygen and humidity determination, etc. These are true in-line techniques and offer rapid, inexpensive real-time analysis. Humidity determination in drying ovens is a common example. [Pg.257]

Electrochemical as well as nonelectrochemical techniques are used when studying these aspects. Electrochemical techniques are commonly used, too, in chemical analysis, in determining the properties of various substances and for other purposes. The nonelectrochemical techniques include chemical (determining the identity and quantity of reaction products), radiotracer, optical, spechal, and many other physical methods. Sometimes these methods are combined with electrochemical methods for instance, when studying the optical properties of an electrode surface while this is polarized. Nonelectrochemical techniques are described in more detail in Chapter 27. [Pg.191]

Wise SA (1993) Standard reference materials for the determination of trace organic constituents in environmental samples. In Barcelo D, ed. Environmental Analysis Techniques, Applications and Quality Assurance, pp 403-446. Elsevier Science Publishers, Amsterdam, The Netherlands. Wise SA, and Schantz MM (1997) Standard reference materials for the determination of trace organic contaminants in environmental samples. In Clement R and Siu M, eds. Reference Materials for Environmental Analysis Making and Using Them, pp 143-186. Lewis Publishers, Boca Raton, FL. [Pg.110]

NMR spectroscopy is one of the most widely used analytical tools for the study of molecular structure and dynamics. Spin relaxation and diffusion have been used to characterize protein dynamics [1, 2], polymer systems[3, 4], porous media [5-8], and heterogeneous fluids such as crude oils [9-12]. There has been a growing body of work to extend NMR to other areas of applications, such as material science [13] and the petroleum industry [11, 14—16]. NMR and MRI have been used extensively for research in food science and in production quality control [17-20]. For example, NMR is used to determine moisture content and solid fat fraction [20]. Multi-component analysis techniques, such as chemometrics as used by Brown et al. [21], are often employed to distinguish the components, e.g., oil and water. [Pg.163]

The adsorption/desorption isotherms measured by NMR (equivalent to conventionally measured isotherms), extracted from two different regions of the imaging field of view corresponding to the two ceramics, are shown in Figure 3.5.9. Once these local isotherms are extracted, they are simply the local adsorption for that point in space contained within the material, measured non-invasively and non-destructively. Conventional analysis techniques for adsorption isotherms (such as BET theory) can therefore be applied to the data, to determine the microstructural properties corresponding to that isotherm curve. [Pg.318]

More recently, the same author [41] has described polymer analysis (polymer microstructure, copolymer composition, molecular weight distribution, functional groups, fractionation) together with polymer/additive analysis (separation of polymer and additives, identification of additives, volatiles and catalyst residues) the monograph provides a single source of information on polymer/additive analysis techniques up to 1980. Crompton described practical analytical methods for the determination of classes of additives (by functionality antioxidants, stabilisers, antiozonants, plasticisers, pigments, flame retardants, accelerators, etc.). Mitchell... [Pg.18]


See other pages where Analysis techniques determination is mentioned: [Pg.73]    [Pg.73]    [Pg.363]    [Pg.201]    [Pg.397]    [Pg.41]    [Pg.60]    [Pg.383]    [Pg.384]    [Pg.56]    [Pg.69]    [Pg.347]    [Pg.321]    [Pg.14]    [Pg.425]    [Pg.336]    [Pg.665]    [Pg.394]    [Pg.259]    [Pg.237]    [Pg.321]    [Pg.317]    [Pg.699]   


SEARCH



Analysis techniques

© 2024 chempedia.info