Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium preservation

In the weakly acidic preservatives, activity resides primarily in the unionized molecules and they only have significant efficacy at pHs where ionization is low. Thus, benzoic and sorbic acids (pKa = 4.2 and 4.75, respectively) have limited preservative usefulness above pH 5, while the 4(p)-hydroxybenzoate esters with their non-ionizable ester group and poorly ionizable hydroxyl substituent (pKa ca. 8.5) have moderate protective effect even at neutral pH levels. The activity of quaternary ammonium preservatives and chlorhexidine probably resides with their cations and are effective in products of neutral pH. Formulation pH can also directly influence the sensitivity of microorganisms to preservatives (see Chapter 11). [Pg.367]

Preservative availability may be appreciably reduced by interaction with packaging materials. Examples include the permeation of phenolic preservatives into the rubber wads and teats of multi-dose injection or eye-drop containers and by their interaction with flexible nylon tubes for creams. Quaternary ammonium preservative levels in formulations have been significantly reduced by adsorption onto the surfaces of plastic and glass containers. Volatile preservatives such as chloroform are so readily lost by the routine opening and closing of containers that their usefulness is somewhat restricted to preservation of medicines in sealed, impervious containers during storage, with quite short use lives once opened. [Pg.367]

Since the organic mercurials offer an alternative to quaternary ammonium preservatives, and since preservative efficacy of ophthalmic solutions is essential, the choice among these alternatives should be based on a benefit-to-risk analysis as long as a ban is not imposed on the use of these organometallic preservatives. [Pg.434]

The key markets for quaternaries are as swimming pool algaecides and in cooling water appHcations (see Water, treatment of swimming pools, spas, AND HOTTUBs), which further explains their importance as process biocides rather than preservatives. Some uses in latex films and plastics have been claimed (14,15). Primary quaternary ammonium industrial antimicrobial agents and their producers are presented in Table 4. [Pg.94]

Alkylbenzyldimethyl quaternaries (ABDM) are used as disinfectants (49) and preservatives. The most effective alkyl chain length for these compounds is between 10 and 18 carbon atoms. Alkyltrimethyl types, alkyl dimethylbenzyl types, and didodecyl dimethyl ammonium chloride [3401-74-9] exhibit excellent germicidal activity (151—159). Dialkyldimethyl types are effective against anaerobic bacteria such as those found in oil wells (94—97). One of the most effective and widely used biocides is didecyl dimethyl ammonium chloride [7173-57-5]. [Pg.383]

A.mmonium ben ate [1863-63-41], C H COONH, mp, 198°C. This is a dull white powder which gradually loses ammonia on exposure to air. Its aqueous solution, it is slightly acidic. Ammonium benzoate has been suggested as a component in certain mbber formulations (40) and as a preservative in paints and glues. [Pg.56]

Metals in contact with timber can be corroded by the acetic acid of the timber and by treatment chemicals present in it. Treatment chemicals include ammonium sulfate and ammonium phosphate flame-retardants. These are particularly corrosive towards steel, aluminum and copper alloys. Preservative treatments include copper salts which, at high timber moisture contents, are corrosive towards steel, aluminum alloys and zinc-coated items. [Pg.903]

Recently, there has been much interest in developing water-soluble tributyltin biocides to lessen the costs of application, and to prevent fire hazards when treating material in confined spaces. Bis(tributyltin) oxide itself has a very low aqueous solubility ( 0.001%), but it may be made water-dispersible by the addition of certain (534, 535) quaternary ammonium salts. Formulations of this type, although currently under development as wood preservatives (534), have been used extensively in the United Kingdom for the treatment of stonework to eradicate fungal growths, algae, mosses, and lichens (535). [Pg.55]

Fig. 10.8 A where the R substituents are alkyl or heterocyclic radicals to give compounds such as cetyltrimethylammonium bromide (cetrimide), cetylpyridinium chloride and benzalkonium chloride. Inspection of the stmctures of these compounds (Fig. 10.8B) indicates the requirement for good antimicrobial activily of having a chain length in the range Cg to Cig in at least one of the R substituents. In the pyridinium compounds (Fig. 10.8C) three of the four covalent links may be satisfied by the nitrogen in a pyridine ring. Polymeric quaternary ammonium salts such as polyquatemium 1 are finding increasing use as preservatives. Fig. 10.8 A where the R substituents are alkyl or heterocyclic radicals to give compounds such as cetyltrimethylammonium bromide (cetrimide), cetylpyridinium chloride and benzalkonium chloride. Inspection of the stmctures of these compounds (Fig. 10.8B) indicates the requirement for good antimicrobial activily of having a chain length in the range Cg to Cig in at least one of the R substituents. In the pyridinium compounds (Fig. 10.8C) three of the four covalent links may be satisfied by the nitrogen in a pyridine ring. Polymeric quaternary ammonium salts such as polyquatemium 1 are finding increasing use as preservatives.
Substances that have been used as preservatives for disperse systems include chlorocresol, chlorobutanol, benzoates, phenylmercuric nitrate, parabens, and others [76,77]. The use of cationic antimicrobial agents such as quaternary ammonium compounds (e.g., benzalkonium chloride) is contraindicated in many cases because they may be inactivated by other formulation components and/or they may alter the charge of the dispersed phase. Clay suspensions and gels should be adequately preserved with nonionic antimicrobial preservatives. The use of preservatives is generally limited to products that are not intended for parenteral use. Intravenous injectable... [Pg.259]

The most widely used preservative remains benzalkonium chloride, which often is supplemented with disodium edetate. The benzalkonium chloride defined in the USP monograph is the quaternary ammonium compound alkylbenzyldimethylammonium chloride, in which the alkyl portion is composed of a mixture of chain lengths ranging from C8 to C16. This compound s popularity is based, despite its compatibility limitations, on its being the most effective and rapid-acting preservative with excellent chemical stability. It is stable over a wide pH range and does not... [Pg.432]

Other quaternary ammonium germicides, ben-zethonium chloride and benzalkonium bromide, have been used in several ophthalmic solutions. While these have the advantage of not being a chemical mixture, they do not possess the bactericidal effectiveness of benzalkonium chloride and are subject to the same incompatibility limitations. In addition, the maximum concentration for benzethonium chloride is 0.01%. Several new products that form gels in the eye, like Timolol Gel Forming Solution and Timoptic-XE, employ another quaternary preservative, BDAB, in the formulation. [Pg.433]

This preservative is comparatively new to ophthalmic preparations and is a polymeric quaternary ammonium germicide. Its advantage over other quaternary ammonium seems to be its inability to penetrate ocular tissues, especially the cornea. It has been used at concentrations of 0.001-0.01% in contact lens solutions as well as dry eye products. At clinically effective levels of preservative, POLYQUAD is approximately 10 times less toxic than benzalkonium chloride [87,137], Various in vitro tests and in vivo evaluations substantiate the safety of this compound [137,141,142], This preservative has been extremely useful for soft contact lens solutions because it has the least propensity to adsorb onto or absorb into these lenses, and it has a practically nonexistent potential for sensitization. Its ad-sorption/absorption with high water and high ionic lenses can be resolved by carefully balancing formulation components [143],... [Pg.434]

A study of by Palmer-Toy et al.,12 summarized in Table 19.1, provides further empirical evidence of the utility of techniques coupling heating with efficient protein extraction for the proteomic analysis of FFPE tissue. A specimen from a patient with chronic stenosing external otitis was divided in half and preserved as fresh-frozen tissue or FFPE. Ten micromolar sections of the FFPE tissue were vortexed in heptane to deparaffinize the tissue and were then co-extracted with methanol. The methanol layer was evaporated, and the protein residue was resuspended in 2% SDS/lOOmM ammonium bicarbon-ate/20mM dithiothreitol (DTT), pH 8.5 and heated at 70°C for lh. After tryptic digestion, 123 total confident proteins were identified in the FFPE tissue, compared to 94 proteins identified from the fresh-frozen tissue. Hwang et al. also reported up to a fivefold increase in protein extraction efficiency for samples extracted in a Tris-HCl/2% SDS/1% Triton X-100/1% deoxycholate solution at 94°C for 30 min versus samples extracted in 100 mM ammonium bicarbonate/30% acetonitrile at the same temperature.14... [Pg.340]

Degobbis [60] studied the storage of seawater samples for ammonia determination. The effects of freezing, filtration, addition of preservatives, and type of container on the concentration of ammonium ions in samples stored for up to a few weeks were investigated. Both rapid and slow freezing were equally effective in stabilising ammonium ion concentration, and the addition of phenol as a preservative was effective in stabilising non-frozen samples for up to two weeks. [Pg.53]

As long as the solution which has been made alkaline retains its colour the ammonium colow base, which preserves the quinonoid structure of the dye, is still present (Hantzsch). This base is stable for a short time only and can in no case be isolated. The disappearance of the quinonoid system, which rapidly follows, occurs either through a rearrangement of the genuine base to the so-called pseudo- or carbinol-base, accompanied by the wandering of the OH-group ... [Pg.330]


See other pages where Ammonium preservation is mentioned: [Pg.232]    [Pg.232]    [Pg.31]    [Pg.522]    [Pg.149]    [Pg.273]    [Pg.85]    [Pg.327]    [Pg.960]    [Pg.23]    [Pg.545]    [Pg.96]    [Pg.178]    [Pg.358]    [Pg.359]    [Pg.5]    [Pg.82]    [Pg.474]    [Pg.208]    [Pg.917]    [Pg.1195]    [Pg.182]    [Pg.83]    [Pg.388]    [Pg.20]    [Pg.116]    [Pg.117]    [Pg.26]    [Pg.104]    [Pg.526]    [Pg.20]    [Pg.20]    [Pg.21]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Preservatives quaternary ammonium compounds

Preservatives quaternary ammonium salts

© 2024 chempedia.info