Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium nitrate solubility

Some commonly used primary nutrient fertilizers are incidentally also rich sources of calcium. Ordinary superphosphate contains monocalcium phosphate and gypsum in amounts equivalent to all of the calcium originally present in the phosphate rock. Triple superphosphate contains soluble monocalcium phosphate equivalent to essentially all the P2 5 product. Other fertilizers rich in calcium are calcium nitrate [10124-37-5] calcium ammonium nitrate [39368-85-9] and calcium cyanamide [156-62-7]. The popular ammonium phosphate-based fertilizers are essentially devoid of calcium, but, in view of the natural calcium content of soils, this does not appear to be a problem. [Pg.242]

Several zinc and copper micronuttient compounds are soluble in a variety of nitrogen solutions. Ammonia—ammonium nitrate solutions containing 2.5% Zn and 1% Cu can be prepared (100). Micronutrients are not very soluble in urea—ammonium nitrate solution unless the pH is raised to 7 or 8 by adding ammonia, whereupon zinc and copper become much more soluble. [Pg.243]

Uses. A soluble form of magnesium nitrate is used as a fertilizer ia states such as Florida where drainage through the porous, sandy soil depletes the magnesium (see Fertilizers). Magnesium nitrate is also used as a prilling aid in the manufacture of ammonium nitrate. A 0.25—0.50% addition of magnesium nitrate to the process improves the stabHity of the prills and also improves durabHity and abrasion resistance. [Pg.352]

Ammonium nitrate [6484-S2-2J, NH NO, formula wt 80.04, is the most commercially important ammonium compound both Hi terms of production volume and usage. It is the principal component of most iadustrial explosives and nonmilitary blasting compositions however, it is used primarily as a nitrogen fertilizer. Ammonium nitrate does not occur Hi nature because it is very soluble. It was first described Hi 1659 by the German scientist Glauber, who prepared it by reaction of ammonium carbonate and nitric acid. He called it nitrium flammans because its yeUow flame (from traces of sodium) was... [Pg.364]

Physical and Chemical Properties. Ammonium nitrate is a white, crystalline salt, df = 1.725, that is highly soluble in water, as shown in Table 3 (7). Although it is very hygroscopic, it does not form hydrates. This hygroscopic nature compHcates its usage in explosives, and until about 1940, was a serious impediment to its extensive use in fertilizers. The soHd salt picks up water from air when the vapor pressure of water exceeds the vapor pressure of a saturated aqueous ammonium nitrate solution (see Table 4). [Pg.365]

Quality of Product. Ammonium nitrate, commonly made from pure synthetic raw materials, is itself of high purity. If the product is intended for use in explosives, it should be at least 99% ammonium nitrate and contain no more than 0.15% water. It should contain only small amounts of water-insoluble and ether-soluble material, sulfates and chlorides, and should not contain nitrites. The soHd product ought to be free from alkalinity, but be only slightly acidic. [Pg.367]

Qualitative. The classic method for the quaUtative determination of silver ia solution is precipitation as silver chloride with dilute nitric acid and chloride ion. The silver chloride can be differentiated from lead or mercurous chlorides, which also may precipitate, by the fact that lead chloride is soluble ia hot water but not ia ammonium hydroxide, whereas mercurous chloride turns black ia ammonium hydroxide. Silver chloride dissolves ia ammonium hydroxide because of the formation of soluble silver—ammonia complexes. A number of selective spot tests (24) iaclude reactions with /)-dimethy1amino-henz1idenerhodanine, ceric ammonium nitrate, or bromopyrogaHol red [16574-43-9]. Silver is detected by x-ray fluorescence and arc-emission spectrometry. Two sensitive arc-emission lines for silver occur at 328.1 and 338.3 nm. [Pg.91]

Precipitated or synthetic barium carbonate is the most commercially important of all the barium chemicals except for barite. Barium carbonate is an unusually dense material, that is almost kisoluble ki water and only slightly soluble ki carbonated water. It does dissolve ki dilute hydrochloric, nitric, and acetic acids and is also soluble ki ammonium nitrate and ammonium chloride solutions. [Pg.477]

Solid particulates are captured as readily as hquids in fiber beds but can rapidly plug the bed if they are insoluble. Fiber beds have frequently been used for mixtures of liqmds and soluble sohds and with soluble solids in condensing situations. Sufficient solvent (usually water) is atomized into the gas stream entering the collector to irrigate the fiber elements and dissolve the collected particulate. Such nber beds have been used to collect fine fumes such as ammonium nitrate and ammonium chloride smokes, and oil mists from compressed air. [Pg.1440]

Recent years, the authors have innovatively proposed a method by using the aqueous ammonia liquor containing hexamine cobalt (II) complex to scrub the NO-containing flue gases[6-9], since several merits of this complex have been exploited such as (1) activation of atmospheric O2 to a peroxide to accelerate the O2 solubility, (2) coordination of NO, as NO is a stronger ligand than NH3 and H2O of Co( II) complexes to enhance the NO absorption and (3), catalysis of NO oxidation to further improve the absorption both of O2 and NO. Thus, a valuable product of ammonium nitrate can be obtained. [Pg.229]

Higher phytoextraction coefficients indicate higher metal uptake. The effectiveness of phytoextraction can be limited by the sorption of metals to soil particles and the low solubility of the metals however, metals can be solubilized through the addition of acids or chelating agents and so allow uptake of the contaminant by the plant. Ethylene diamine tetra-acetic acid (EDTA), citric acid, and ammonium nitrate have been reported to help in the solubilization of lead, uranium, and cesium... [Pg.550]

Up to, or over 40% of the ammonium nitrate content of explosive mixtures with water-soluble organic fuels may be replaced with advantage by calcium nitrate. [Pg.1325]

Two typical acid extractants are the Bray (which has two forms, both of which are acidic) and the Mehlich-3. The Bray extractant is a dilute solution of hydrochloric acid and ammonium fluoride [11], The Mehlich-3 extractant is a dilute solution of acetic and nitric acids and also contains ammonium nitrate and EDTA [11], Both are designed to extract soluble, exchangeable, and easily dissolved nutrients, particularly phosphate. While the Bray extractant is designed to extract plant available phosphorus, the Mehlich-3 extractant also extracts potassium [10-12],... [Pg.238]

Grafting and networking may modify the mechanical, chemical, and functional properties of polymers and enhance their utilization for some purposes, such as for water treatment (Kumar and Verma, 2007 Mishra et al., 2003). Psyllium derivatives were prepared by grafting acrylonitrile onto psyllium molecules using a ceric ammonium nitrate and nitric acid system (Mishra et al., 2003). The resulted grafted psyllium samples were not soluble in commonly used solvents or their combinations. In 2007, methacrylic acid derivatives of psyllium were prepared using ammonium persulfate as initiator and cross-linked using N,N-methylenebisacryla-mide as the crosslinker (Kumar and Verma, 2007). The modified psyllium... [Pg.214]

Ammonium nitrate is a white hygroscopic solid, mp 169.6°C, is relatively unstable, and forms explosive mixtures with combustible materials or when contaminated with certain organic compounds. It is very soluble in water, 55% at 0°C. [Pg.61]

After removing cerium (and thorium), the nitric acid solution of rare earths is treated with ammonium nitrate. Lanthanum forms the least soluble double salt with ammonium nitrate, which may be removed from tbe solution by repeated crystallization. Neodymium is recovered from this solution as the double magnesium nitrate by continued fractionation. [Pg.599]

Diammino-silver nitrate forms glistening rhombic or prismatic crystals which blacken on exposure to light. It is fairly stable, and may be heated to 100° C. without loss of ammonia. Further heating causes it to decompose, and finally to melt with evolution of nitrogen and ammonia, leaving a residue of metallic silver and ammonium nitrate. It is soluble in water, but partial dissociation takes place so that the solution is alkaline in reaction, and it therefore yields a precipitate of silver chloride and soluble chlorides. Certain of the metals—for example, zinc, cadmium, and copper—quickly reduce the ammine in solution to metallic silver. [Pg.39]

Several tetrammino-derivatives of gold salts have been prepared. When dilute ehloraurie acid saturated with ammonium nitrate is added to a cold saturated solution of ammonium nitrate and the mixture treated with ammonia gas at ordinary temperature, a precipitate of fetrammino-auric nitrate, [Au(NH3)4](N03)3, is obtained. Tctrammino-aurie nitrate is soluble in water and may be crystallised from warm water. It may be precipitated from solution by the addition of any soluble nitrate, but with potassium, sodium, or ammonium nitrate it forms double salts. Thus, potassium nitrate if added to a concentrated solution of tetrammino-auric nitrate forms the compound [Au (NH 3).,] (NO 3)j.KNO. j, which crystallises from solution in needles. [Pg.42]

Nitro-pentammino-chromic Nitrate, [Cr(NI-I3)5NO2](N03)2, is obtained from the chloride by precipitation of a solution of the chloride with concentrated aqueous ammonium nitrate, or by decomposing a solution of aquo-pentammino-salt with half its volume of dilute nitric acid and addition of sodium nitrite. It crystallises in yellow octahedra, is less soluble in water than the corresponding chloride, and decomposes explosively on heating. [Pg.94]

F. Riidorff, and P. P. Fedoteeff have measured the solubility of sodium or potassium chloride in soln. of ammonium chloride, and in soln. of sodium bicarbonate C. J. B. Karsten, A. Winkelmann, F. Margueritte, F. Riidorff, and J. Hannaman, in ammonium nitrate F. Riidorff, in ammonium sulphate C. J. B. Karsten,... [Pg.541]

According to the ionic hypothesis, if the solubility product [Li]2[C0"3] is not altered, the solubility can be increased by the union of one or other of the ions of the carbonate forming complexes with the added salt. This effect is not very marked with potassium or sodium chloride or nitrate. The marked increase in the solubility with sodium and potassium sulphates is due to the formation of lithium sulphate, but with the ammonium salts soluble complexes like Li(NH3) and NH2C00 may be formed just as is the case with magnesium carbonate in the presence of ammonium salts. [Pg.756]


See other pages where Ammonium nitrate solubility is mentioned: [Pg.29]    [Pg.10]    [Pg.444]    [Pg.463]    [Pg.337]    [Pg.365]    [Pg.196]    [Pg.256]    [Pg.119]    [Pg.848]    [Pg.53]    [Pg.54]    [Pg.1325]    [Pg.83]    [Pg.53]    [Pg.525]    [Pg.261]    [Pg.445]    [Pg.73]    [Pg.576]    [Pg.456]    [Pg.261]    [Pg.82]    [Pg.233]    [Pg.183]    [Pg.396]    [Pg.398]    [Pg.802]    [Pg.816]    [Pg.830]   
See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Ammonium nitrate

Nitration ammonium

Solubility nitrate

© 2024 chempedia.info