Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium adsorption

Mackin, J.E., and Aller, R.C. (1984) Ammonium adsorption in marine sediments. Limnol. Oceanogr. 29, 250-257. [Pg.621]

CEC, depending on the magnitude of preference of Na over M or vice versa, is occupied by sodium. A similar analysis can be conducted for both ammonium and potassium bases by simply using the ammonium adsorption ratio (AAR) or potassium adsorption ratio (PAR). [Pg.380]

Weber, M. A., K. A. Barbaric, and D. G. Westfall. 1983a. Ammonium adsorption by a zeolite in a static and dynamic system. J. Environ. Qual. 12 549-552. [Pg.554]

Morse, J. W., and Morin, J. P. (2005). Ammonium adsorption on coastal marine sediment Influence of redox conditions. Mar. Chem. 95, 107—112. [Pg.910]

Holmboe, N. and Kristensen, E. (2003) Ammonium adsorption in sediments of a tropical mangrove forest (Thailand) and a temperate Wadden Sea area (Denmark). Wetland Ecology and Management (in press). [Pg.36]

Rosenfeld, J. K. (1979). Ammonium adsorption in nearshore anoxic sediments. Limnol. Oceanogr. 24, 356-364. [Pg.349]

FIGURE 8.26 Ammonium adsorption isotherm. Relationship between ammonium adsorbed on cation exchange complex and pore water ammonium concentration. [Pg.281]

Biogeochemistry of Wetlands Science and Applications Ammonium adsorption—aerobic... [Pg.282]

Fuerstenau and co-workers observed in the adsorption of a long-chain ammonium ion RNH3 on quartz that at a concentration of 10 Af there was six-tenths of a mono-layer adsorbed and the f potential was zero. At 10 M RNH3, however, the f potential was -60 mV. Calculate what fraction of a monolayer should be adsorbed in equilibrium with the 10 M solution. Assume a simple Stem model. [Pg.490]

Still another type of adsorption system is that in which either a proton transfer occurs between the adsorbent site and the adsorbate or a Lewis acid-base type of reaction occurs. An important group of solids having acid sites is that of the various silica-aluminas, widely used as cracking catalysts. The sites center on surface aluminum ions but could be either proton donor (Brpnsted acid) or Lewis acid in type. The type of site can be distinguished by infrared spectroscopy, since an adsorbed base, such as ammonia or pyridine, should be either in the ammonium or pyridinium ion form or in coordinated form. The type of data obtainable is illustrated in Fig. XVIII-20, which shows a portion of the infrared spectrum of pyridine adsorbed on a Mo(IV)-Al203 catalyst. In the presence of some surface water both Lewis and Brpnsted types of adsorbed pyridine are seen, as marked in the figure. Thus the features at 1450 and 1620 cm are attributed to pyridine bound to Lewis acid sites, while those at 1540... [Pg.718]

For other adsorptives the experimental evidence, though less plentiful than with nitrogen, supports the view that at a given temperature the lower closure point is never situated below a critical relative pressure which is characteristic of the adsorptive. Thus, for benzene at 298 K Dubinin noted a value of 017 on active carbons, and on active charcoals Everett and Whitton found 0-19 other values, at 298 K, are 0-20 on alumina xerogel, 0-20-0-22 on titania xerogel and 017-0-20 on ammonium silicomolybdate. Carbon tetrachloride at 298 K gives indication of a minimum closure point at 0-20-0-25 on a number of solids including... [Pg.155]

Fig. 4.1 Adsorption isotherms of some organic vapours on ammonium phosphomolybdate outgassed at 180°C. The isotherm temperatures (reading downwards) were 25°C, 25°C, 25°C, 0°C. Fig. 4.1 Adsorption isotherms of some organic vapours on ammonium phosphomolybdate outgassed at 180°C. The isotherm temperatures (reading downwards) were 25°C, 25°C, 25°C, 0°C.
Evidence of a different kind is furnished by the fact that the Gurvitsch rule (p. 113) is often obeyed by systems showing Type I isotherms " the amounts of different adsorptives taken up by a given adsorbent, when expressed as a volume of liquid, agree within a few per cent. The order of agreement is illustrated by the typical examples in Table 4.1 for the adsorption of n-alkanes on ammonium phosphomolybdate, and in Table 4.2 which refers to a variety of adsorptives on a silica gel. It must be admitted, however, that there are cases where considerable deviations from the Gurvitsch mle are found, even though the isotherms are of Type 1. Thus, in Table 4.3 the variation in values of the saturation uptake is far outside... [Pg.200]

Perhaps the most direct method of evaluating microporosity is to fill up the micropores with some suitable adsorbate whilst leaving the mesopores, macropores and external surface free. The use of n-nonane as a preadsorbate was proposed by Gregg and Langford on the basis of earlier work on the adsorption of n-alkanes C, to C, on ammonium phos-phomolybdate, a microporous solid. This work had shown that the rate at... [Pg.211]

As remarked on p. 214, the validity of the nonane pre-adsorption method when adsorptives other than nitrogen are employed for determination of the isotherms, has been examined by Tayyab. Two organic adsorptives, /i-hexane and carbon tetrachloride, which could be used at or near room temperature, were selected and the adsorbents were the ammonium salts of... [Pg.239]

Fig. 4J0 Adsorption isotherms on ammonium silicomolybdate powder. (I), (4). nitrogen at 77 K (2), (3), /t-hexane at 298 K. Isotherms I and 2 were measured before, and 3 and 4 after, pre-adsorption of n-nonane. Open symbols, adsorption solid symbols, desorption. (Adsorption is expressed in mm (liquid.)... Fig. 4J0 Adsorption isotherms on ammonium silicomolybdate powder. (I), (4). nitrogen at 77 K (2), (3), /t-hexane at 298 K. Isotherms I and 2 were measured before, and 3 and 4 after, pre-adsorption of n-nonane. Open symbols, adsorption solid symbols, desorption. (Adsorption is expressed in mm (liquid.)...
Fig. 4J2 Adsorption isotherms of carbon tetrachloride (at 298 K) on ammonium phosphotungstate compact, (1) before, (2) after preadsorption of n-nonane. (3) is the isotherm of nitrogen, after preadsorption, for reference. Open symbols, adsorption solid symbols,... Fig. 4J2 Adsorption isotherms of carbon tetrachloride (at 298 K) on ammonium phosphotungstate compact, (1) before, (2) after preadsorption of n-nonane. (3) is the isotherm of nitrogen, after preadsorption, for reference. Open symbols, adsorption solid symbols,...
Structure Modification. Several types of stmctural defects or variants can occur which figure in adsorption and catalysis (/) surface defects due to termination of the crystal surface and hydrolysis of surface cations (2) stmctural defects due to imperfect stacking of the secondary units, which may result in blocked channels (J) ionic species, eg, OH , AIO 2, Na", SiO , may be left stranded in the stmcture during synthesis (4) the cation form, acting as the salt of a weak acid, hydrolyzes in aqueous suspension to produce free hydroxide and cations in solution and (5) hydroxyl groups in place of metal cations may be introduced by ammonium ion exchange, followed by thermal deammoniation. [Pg.447]

The most commonly used emulsifiers are sodium, potassium, or ammonium salts of oleic acid, stearic acid, or rosin acids, or disproportionate rosin acids, either singly or in mixture. An aLkylsulfate or aLkylarenesulfonate can also be used or be present as a stabilizer. A useful stabilizer of this class is the condensation product of formaldehyde with the sodium salt of P-naphthalenesulfonic acid. AH these primary emulsifiers and stabilizers are anionic and on adsorption they confer a negative charge to the polymer particles. Latices stabilized with cationic or nonionic surfactants have been developed for special apphcations. Despite the high concentration of emulsifiers in most synthetic latices, only a small proportion is present in the aqueous phase nearly all of it is adsorbed on the polymer particles. [Pg.254]

Electrochemical reduction of iridium solutions in the presence azodye (acid chrome dark blue [ACDB]) on slowly dropping mercury electrode is accompanied by occurrence of additional peaks on background acetic-ammonium buffer solutions except for waves of reduction azodye. Potentials of these peaks are displaced to cathode region of the potential compared to the respective peaks of reduction of the azodye. The nature of reduction current in iridium solutions in the presence ACDB is diffusive with considerable adsorptive limitations. The method of voltamiuetric determination of iridium with ACDB has been developed (C 1-2 x 10 mol/L). [Pg.118]

Last time development of methods of iodine determination, which include preliminary sorption preconcentration of microcomponents and their subsequent determination in phase of concentrate get great practical significance. Silica gel (SG) with adsorptively modified quaternary ammonium salts (QAS) gets properties of anion-exchange resin. The sorbents modified in this way can be used successfully for determination of different anions. [Pg.155]

Anilinonaphthalene-l-sulfonic acid ammonium salt, which scarcely fluoresces in aqueous solution, is stimulated to intense fluorescence by long-wavelength UV light (A = 365 run) if it is dissolved in nonpolar solvents or adsorptively bound to nonpolar molecular regions [3]. [Pg.192]

In the case of ions, the repulsive interaction can be altered to an attractive interaction if an ion of opposite charge is simultaneously adsorbed. In a solution containing inhibitive anions and cations the adsorption of both ions may be enhanced and the inhibitive efficiency greatly increased compared to solutions of the individual ions. Thus, synergistic inhibitive effects occur in such mixtures of anionic and cationic inhibitors . These synergistic effects are particularly well defined in solutions containing halide ions, I. Br , Cl", with other inhibitors such as quaternary ammonium cations , alkyl benzene pyridinium cations , and various types of amines . It seems likely that co-ordinate-bond interactions also play some part in these synergistic effects, particularly in the interaction of the halide ions with the metal surfaces and with some amines . [Pg.809]

Either the Mohr titration or the adsorption indicator method may be used for the determination of chlorides in neutral solution by titration with standard 0.1M silver nitrate. If the solution is acid, neutralisation may be effected with chloride-free calcium carbonate, sodium tetraborate, or sodium hydrogencarbonate. Mineral acid may also be removed by neutralising most ofthe acid with ammonia solution and then adding an excess of ammonium acetate. Titration of the neutral solution, prepared with calcium carbonate, by the adsorption indicator method is rendered easier by the addition of 5 mL of 2 per cent dextrin solution this offsets the coagulating effect of the calcium ion. If the solution is basic, it may be neutralised with chloride-free nitric acid, using phenolphthalein as indicator. [Pg.351]

Iodides can also be determined by this method, and in this case too there is no need to filter off the silver halide, since silver iodide is very much less soluble than silver thiocyanate. In this determination the iodide solution must be very dilute in order to reduce adsorption effects. The dilute iodide solution (ca 300 mL), acidified with dilute nitric acid, is treated very slowly and with vigorous stirring or shaking with standard 0.1 M silver nitrate until the yellow precipitate coagulates and the supernatant liquid appears colourless. Silver nitrate is then present in excess. One millilitre of iron(III) indicator solution is added, and the residual silver nitrate is titrated with standard 0.1M ammonium or potassium thiocyanate. [Pg.356]

Determination of beryllium by precipitation with ammonia solution and subsequent ignition to beryllium oxide Discussion. Beryllium may be determined by precipitation with aqueous ammonia solution in the presence of ammonium chloride or nitrate, and subsequently igniting and weighing as the oxide BeO. The method is not entirely satisfactory owing to the gelatinous nature of the precipitate, its tendency to adhere to the sides of the vessel, and the possibility of adsorption effects. [Pg.449]


See other pages where Ammonium adsorption is mentioned: [Pg.67]    [Pg.872]    [Pg.19]    [Pg.280]    [Pg.282]    [Pg.67]    [Pg.872]    [Pg.19]    [Pg.280]    [Pg.282]    [Pg.478]    [Pg.215]    [Pg.387]    [Pg.388]    [Pg.189]    [Pg.193]    [Pg.70]    [Pg.83]    [Pg.257]    [Pg.29]    [Pg.347]    [Pg.1656]    [Pg.22]    [Pg.1379]    [Pg.812]    [Pg.352]   
See also in sourсe #XX -- [ Pg.542 ]




SEARCH



© 2024 chempedia.info