Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia compounds with

Ethylamine, monoethylamine, CH3CH2NH2-B.p. 19 C. Prepared by reduction of acetonitrile or by heating ethyl chloride with alcoholic ammonia under pressure. It is a strong base and will displace ammonia from ammonium salts. Forms a crystalline hydrochloride and also crystalline compounds with various metallic chlorides. [Pg.166]

Picrates, Many aromatic hydrocarbons (and other classes of organic compounds) form molecular compounds with picric acid, for example, naphthalene picrate CioHg.CgH2(N02)30H. Some picrates, e.g., anthracene picrate, are so unstable as to be decomposed by many, particularly hydroxylic, solvents they therefore cannot be easily recrystaUised. Their preparation may be accomplished in such non-hydroxylic solvents as chloroform, benzene or ether. The picrates of hydrocarbons can be readily separated into their constituents by warming with dilute ammonia solution and filtering (if the hydrocarbon is a solid) through a moist filter paper. The filtrate contains the picric acid as the ammonium salt, and the hydrocarbon is left on the filter paper. [Pg.518]

Preliminary indication of the presence of a phenol ester may be obtained by heating the compound with soda-lime esters of phenols and also aromatic hydroxy-acids usually give the phenol. (Likewise amides, Imides, nitriles, substituted hydrazines, uretheines, etc. eifiord ammonia.)... [Pg.1064]

Boil 0 -5 g. of the compound with 5 ml. of 10 per cent, sodium hydroxide solution and observe whether ammonia is evolved. [Pg.1076]

Compounds with active hydrogen add to the carbonyl group of acetone, often followed by the condensation of another molecule of the addend or loss of water. Hydrogen sulfide forms hexamethyl-l,3,5-trithiane probably through the transitory intermediate thioacetone which readily trimerizes. Hydrogen cyanide forms acetone cyanohydrin [75-86-5] (CH2)2C(OH)CN, which is further processed to methacrylates. Ammonia and hydrogen cyanide give (CH2)2C(NH2)CN [19355-69-2] ix.orn. 6<55i the widely used polymerization initiator, azobisisobutyronitrile [78-67-1] is made (4). [Pg.93]

Recovery of Ammonia. The filter Hquor contains unreacted sodium chloride and substantially all the ammonia with which the brine was originally saturated. The ammonia may be fixed or free. Fixed ammonia (ammonium chloride [12125-02-97]) corresponds stoichiometrically to the precipitated sodium bicarbonate. Free ammonia includes salts such as ammonium hydroxide, bicarbonate, and carbonate, and the several possible carbon—ammonia compounds that decompose at moderate temperatures. A sulfide solution may be added to the filter Hquor for corrosion protection. The sulfide is distilled for eventual absorption by the brine in the absorber. As the filter Hquor enters the distiller, it is preheated by indirect contact with departing gases. The warmed Hquor enters the main coke, tile, or bubble cap-fiUed sections of the distiller where heat decomposes the free ammonium compounds and steam strips the ammonia and carbon dioxide from the solution. [Pg.523]

Coordination Compounds. Palladium forms numerous complexes with ammonia and with simple amines. Examples ate [Pd(NH2)4] ... [Pg.182]

The tertiary amine is formed in a similar manner from the imine and a secondary amine. This side reaction can be minimized by carrying out the hydrogenation in the presence of ammonia, which tends to shift the equiHbrium back towards the imine. When a compound with two or more nitrile groups is hydrogenated, the formation of both cycHc and acycHc secondary and tertiary amines is possible, depending on whether the side reaction is intramolecular or intermolecular. For example, for the hydrogenation of adiponitfile ... [Pg.258]

Metal teUurides for semiconductors are made by direct melting, melting with excess teUurium and volatilizing the excess under reduced pressure, passing teUurium vapor in an inert gas carrier over a heated metal, and high temperature reduction of oxy compounds with hydrogen or ammonia. [Pg.386]

Compounds with Tin—Tin Bonds. The most important class of catenated tin compounds is the hexaorganoditins. The ditin compounds are usually prepared by reductive coupling of a triorganotin haUde with sodium in Hquid ammonia ... [Pg.75]

Schiff bases, also known as imines, ate formed by the condensation of carbonyl compounds with ammonia or primary amines. Hydrogenation of the resulting Schiff bases forms amines, such as benzylamine and dibenzylamine. [Pg.33]

Methylene chloride is easily reduced to methyl chloride and methane by alkaU metal ammonium compounds in Hquid ammonia. When the vapor is contacted with reduced nickel at 200°C in the presence of excess hydrogen, hydrogen chloride and elementary carbon are produced. Heating with alcohoHc ammonia at 100—125°C results in hexamethylenetetramine, (CH2) N4, a heterocycHc compound with aqueous ammonia at 200°C, hydrogen chloride, formic acid, and methylamine are produced. [Pg.519]

Whereas finely divided cobalt is pyrophoric, the metal in massive form is not readily attacked by air or water or temperatures below approximately 300°C. Above 300°C, cobalt is oxidized by air. Cobalt combines readily with the halogens to form haUdes and with most of the other nonmetals when heated or in the molten state. Although it does not combine direcdy with nitrogen, cobalt decomposes ammonia at elevated temperatures to form a nitride, and reacts with carbon monoxide above 225°C to form the carbide C02C. Cobalt forms intermetallic compounds with many metals, such as Al, Cr, Mo,... [Pg.371]

Copper(I) chloride is insoluble to slightly soluble in water. SolubiUty values between 0.001 and 0.1 g/L have been reported. Hot water hydrolyzes the material to copper(I) oxide. CuCl is insoluble in dilute sulfuric and nitric acids, but forms solutions of complex compounds with hydrochloric acid, ammonia, and alkaU haUde. Copper(I) chloride is fairly stable in air at relative humidities of less than 50%, but quickly decomposes in the presence of air and moisture. [Pg.253]

Cyanohydrins (qv) are formed by the reaction of glucose and similar compounds with hydrogen cyanide. The corresponding aminonitrile from methyl isobutyl ketone can be formed with ammonia and hydrogen cyanide. [Pg.376]

Bromopyrido[3,2- i]pyrimidines also give 4-amino compounds with ammonia. [Pg.215]

Isatin (190) is a compound with interesting chemistry. It can be iV-acetylated with acetic anhydride, iV-methylated via its sodium or potassium salt and O-methylated via its silver salt. Oxidation of isatins with hydrogen peroxide in methanolic sodium methoxide yields methyl anthranilates (81AG(E)882>. In moist air, O-methylisatin (191) forms methylisatoid (192). Isatin forms normal carbonyl derivatives (193) with ketonic reagents such as hydroxylamine and phenylhydrazine and the reactive 3-carbonyl group also undergoes aldol condensation with active methylene compounds. Isatin forms a complex derivative, isamic acid (194), with ammonia (76JCS(P1)2004). [Pg.77]

Benzisothiazoles can be prepared by the reaction of aromatic chloro compounds with sulfur and ammonia. Thus, 2,6-dichlorobenzylidene chloride gives 4-chloro-l,2-benzisothiazole (72AHC(14)43), and 2-chlorobenzophenone gives 3-phenyl-l,2-benziso-thiazole (79GEP27 34866). [Pg.169]

Chloral forms well-crystallized adducts (126) with diaziridines containing at least one NH group (B-67MI50800). Carbonyl addition products to formaldehyde or cyclohexanone were also described. Mixtures of aldehydes and ammonia react with unsubstituted diaziridines with formation of a triazolidine ring (128). Fused diaziridines like (128) are always obtained in ring synthesis of diaziridines (127) from aldehyde, ammonia and chloramine. The existence of three stereoisomers of compounds (128) was demonstrated (76JOC3221). Diaziridines form Mannich bases with morpholine and formaldehyde (64JMC626), e.g. (129). [Pg.213]

Just as at low pH, concentration mechanisms substantially increase attack. The two principal mechanisms of concentration are evaporation and condensation. Evaporation increases solute concentrations of compounds with vapor pressures lower than water (such as caustic compounds). Condensation increases concentration of aggressive gases such as ammonia. [Pg.189]

Acetaldehyde ammonia trimer (hexahydro-2,4,6-trimethyl-l,3,5-triazine trihydrate) [76231-37-3] M 183.3, m 94-96 , 95-97 , 97 , b 110 (partly dec). Crystd from EtOH-Et20. When prepared it separates as the trihydrate which can be dried in a vacuum over CaCl2 at room temp to give the anhydrous compound with the same melting point. The dihydrate melts at 25-28° then resolidifies and melts again at 94-95°. IRRITATES THE EYES AND MUCOUS MEMBRANES. [J Org Chem 38 3288 1973.]... [Pg.81]

Environmental Fate. Ammonia combines with sulfate ions in the atmosphere and is washed out by rairtfall, resulting in rapid return of ammonia to the soil and surface waters. Ammonia is a central compound in the environmental cycling of nitrogen. Ammonia in lakes, rivers, and streams is converted to nitrate. [Pg.106]

The amines are a group of compounds with the general formula R-NHj, and all the common amines are hazardous. As a class the amines pose more than one hazard, being flammable, toxic, and, in some cases, corrosive. The amines are an analogous series of compounds and follow the naming pattern of the alkyl halides and the alcohols that is, the simplest amine is methyl amine, with the molecular formula of CH NHj. Methyl amine is a colorless gas with an ammonia-like odor and an ignition temperature of 806°F. It is a tissue irritant and toxic, and it is used as an intermediate in the manufacture of many chemicals. Ethyl amine is next in the series, followed by propyl amine, isopropyl amine, butyl amine and its isomers, and so on. [Pg.202]

Nitrogen forms more than 20 binaiy compounds with hydrogen of which ammonia (NH3, p. 420), hydrazine (N2H4, p. 427) and hydrogen azide (N3H, p. 432) are by far the most important. Hydroxylamine, NH2(OH), is closely related in structure and properties to both ammonia, NH2(H), and hydrazine, NH2(NH2) and it will be convenient to discuss this compound in the present section also (p. 431). Several protonated cationic species such as NH4+, N2H5+, etc, and deprotonated anionic species such as NH2 , N2H3 , etc. also exist but ammonium hydride, NH5, is unknown. Among... [Pg.426]

Thiophenethiols are prepared by reduction of the sulfonyl chlorides or, more conveniently, by the reaction of Grignard rea-gents or thienyllithium compounds with sulfur. They have also been obtained by cleavage or thienyl alkyl sulfides with sodium in liquid ammonia. 3-Thiophenethiol is a by-product in the commercial thiophene synthesis. Thiophenethiols have recently also been prepared by a synthesis involving Friedel-Crafts reaction of 2,4-dinitrobenzenesulfenyl chloride with thiophenes, followed by basic cleavage of the resulting sulfide. ... [Pg.86]

Only a few displacements involving mono-substituted compounds are known. 4-Chloropyrido[2,3-d]pyrimidine reacts readily (96°, 30 min) with aqueous aniline, hydrazine, or ammonia and with diethylamine (0°, 16 hr). In contrast to the 1,3,6-isomers, the 4-oxo and 2,4-dioxo derivatives are readily converted into chloro and thioxo derivatives by phosphorus oxychloride and pentasul-... [Pg.386]

When the 4,4 -dinitroazoxyfurazan 240 reacted with ammonia in anhydrous CHCI3, a mixture of live compounds was formed (Scheme 162) (000HAC48). Compound 241 (59%) was the predominant product. However, the most interesting result of this reaction is the isolation of 3-azido-4-nitrofurazan (3%) and triazene 242 (13%). The formation of these compounds could be explained by reacting the intermediate diazotate generated from the leaving nitrofurazanazoxy moiety with ammonia and with 3-amino-4-nitrofurazan, respectively. [Pg.147]


See other pages where Ammonia compounds with is mentioned: [Pg.28]    [Pg.258]    [Pg.168]    [Pg.389]    [Pg.162]    [Pg.341]    [Pg.383]    [Pg.384]    [Pg.332]    [Pg.389]    [Pg.522]    [Pg.390]    [Pg.572]    [Pg.182]    [Pg.201]    [Pg.489]    [Pg.281]    [Pg.25]    [Pg.118]    [Pg.168]    [Pg.479]    [Pg.277]    [Pg.389]   
See also in sourсe #XX -- [ Pg.501 ]




SEARCH



Alkyl halides Compounds with halogen ammonia

Ammonia compounds

Ammonia with diazo compounds

Aromatic compounds with ammonia

Carbonyl compounds, reaction with ammonia

Reaction of a,3-Dicarbonyl Compounds with Ammonia

Reaction of halogen compounds with ammonia derivatives

Reductive Alkylation of Ammonia with Carbonyl Compounds

© 2024 chempedia.info