Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin and alcoholics

The interaction between alcohol and vitamin A is complex. They have overlapping metabolic pathways a similar 2-step process is involved in the metabolism of both alcohol and vitamin A, with alcohol dehydrogenases and acetaldehyde dehydrogenases being implicated in the conversion of vitamin A to retinoic acid. Alcohol appears to act as a competitive inhibitor of vitamin A oxidation. In addition, chronic alcohol intake can induce cytochrome P450 isoenzymes that appear to increase the breakdown of vitamin A (retinol and retinoic acid) into more polar metabolites in the liver, which can cause hepatocyte death. So chronic alcohol consumption may enhance the intrinsic hepatotoxicity of high-dose vitamin A. Alcohol has also been shown to alter retinoid homoeostasis by increasing vitamin A mobilisation from the liver to extrahepatic tissues, which could result in depletion of hepatic stores of vitamin A. ... [Pg.82]

Freund, G., 1979. The effects of chronic alcohol and vitamin E consumption on aging pigments and learning performance in mice. Life Sciences. 24 145-151. [Pg.582]

Cosmetics and Pharmaceuticals. The main use of hexadecanol (cetyl alcohol) is in cosmetics (qv) and pharmaceuticals (qv), where it and octadecanol (stearyl alcohol) are used extensively as emoUient additives and as bases for creams, Hpsticks, ointments, and suppositories. Octadecenol (oleyl alcohol) is also widely used (47), as are the nonlinear alcohols. The compatibiHty of heavy cut alcohols and other cosmetic materials or active dmg agents, their mildness, skin feel, and low toxicity have made them the preferred materials for these appHcations. Higher alcohols and their derivatives are used in conditioning shampoos, in other personal care products, and in ingested materials such as vitamins (qv) and sustained release tablets (see Controlled RELEASE technology). [Pg.449]

Lithium acetyhde also can be prepared directly in hquid ammonia from lithium metal or lithium amide and acetylene (134). In this form, the compound has been used in the preparation of -carotene and vitamin A (135), ethchlorvynol (136), and (7j--3-hexen-l-ol (leaf alcohol) (137). More recent synthetic processes involve preparing the lithium acetyhde in situ. Thus lithium diisopropylamide, prepared from //-butyUithium and the amine in THF at 0°C, is added to an acetylene-saturated solution of a ketosteroid to directly produce an ethynylated steroid (138). [Pg.229]

The elemental and vitamin compositions of some representative yeasts are Hsted in Table 1. The principal carbon and energy sources for yeasts are carbohydrates (usually sugars), alcohols, and organic acids, as weU as a few other specific hydrocarbons. Nitrogen is usually suppHed as ammonia, urea, amino acids or oligopeptides. The main essential mineral elements are phosphoms (suppHed as phosphoric acid), and potassium, with smaller amounts of magnesium and trace amounts of copper, zinc, and iron. These requirements are characteristic of all yeasts. The vitamin requirements, however, differ among species. Eor laboratory and many industrial cultures, a commercial yeast extract contains all the required nutrients (see also Mineral nutrients). [Pg.387]

Low-molecular-weight products, generally secondary metabolites such as alcohols, carboxyhc and an iino acids, antibiotics, and vitamins, can be recovered using many of the standard operations such as liquid-hquid extraction, adsorption and ion-exchange, described elsewhere in this handbook. Proteins require special attention, however, as they are sufficiently more complex, their function depending on the integrity of a delicate three-dimensional tertiaiy structure that can be disrupted if the protein is not handled correctly. For this reason, this section focuses primarily on protein separations. Cell separations, as a necessary part of the downstrean i processing sequence, are also covered. [Pg.2056]

Wernicke s syndrome is a serious consequence of alcoholism and thiamine (vitamin Bx) deficiency. Certain characteristic signs of this disease, notably ophtalmoplegia, nystagmus, and ataxia, respond rapidly to the administration of thiamine but to no other-vitamin. Wernicke s syndrome may be accompanied by an acute global confusional state that may also respond to thiamine. Left untreated, Wernicke s syndrome frequently leads to a chronic disorder in which learning and memory are strongly impaired. This so-called Korsakoff s psychosis is characterized by confabulation, and is less likely to be reversible once established. [Pg.1315]

Tanner, A.R., Bantock, K.I., Hinks, L., Lloyd, B., Turner, N.R. and Wri t, R. (1986). Depressed selenium and vitamin E levels in an alcoholic population. Possible relationship to hepatic injury through increased lipid peroxidation. D. Dis. Sci. 31, 1307-1312. [Pg.172]

Some osteoporosis risk factors (see Table 53-1) are non-modifiable, including family history, age, ethnicity, sex, and concomitant disease states. However, certain risk factors for bone loss may be minimized or prevented by early intervention, including smoking, low calcium intake, poor nutrition, inactivity, heavy alcohol use, and vitamin D deficiency. [Pg.857]

Suitably positioned vinyl halide can undergo Heck-type intramolecular coupling to generate dienes (equations 124 and 125)216,217. When one of the reacting partners in the Heck reaction is a diene, trienes are obtained (equation 126)218. Heck coupling of ally lie alcohols and alkenyl iodides has been employed for the synthesis of vitamin A and related compounds (equation 127)219,220. A similar double Heck reaction on a Cio-diiodide with a Cis-allylic alcohol leads to -carotene as a mixture of isomers (equation 128)209e. [Pg.435]

Partial hydrogenation of acetylenic compounds bearing a functional group such as a double bond has also been studied in relation to the preparation of important vitamins and fragrances. For example, selective hydrogenation of the triple bond of acetylenic alcohols and the double bond of olefin alcohols (linalol, isophytol) was performed with Pd colloids, as well as with bimetallic nanoparticles Pd/Au, Pd/Pt or Pd/Zn stabilized by a block copolymer (polystyrene-poly-4-vinylpyridine) (Scheme 9.8). The best activity (TOF 49.2 s 1) and selectivity (>99.5%) were obtained in toluene with Pd/Pt bimetallic catalyst due to the influence of the modifying metal [87, 88]. [Pg.239]

Cholecalciferol (vitamin D-3) differs from calciferol only in the alkyl side-chain, so it was assumed to be in the twisted conformation (75a). In alcoholic solution, vitamin D-3 was irradiated with a mercury arc lamp through a cupric sulphate solution filter to give wavelengths above 250 nm. Six products were isolated. Conformation (75a) could reasonably give rise to the assigned structures (76a), (77a) and (78a) (Scheme 2.3). Photoisomerization could give conformation (75b), which would explain the isolation of (76b), (77b) and (78b). The report is confident on four of the new compounds, but notes that the cyclobutene structures (78a) and (78b) are tentatively assigned [63]. [Pg.70]

When utilization tests were run on a group of 18 male and 7 female human subjects, wide variations in blood level responses were found, particularly among the males.36 [Both in animals (rats) and humans the two sexes respond somewhat differently.] When 134,000 ig. of vitamin A in four different forms, viz., vitamin A alcohol, vitamin A acetate, vitamin A natural ester No. 1, and vitamin A natural ester No. 2, was fed to the group of 18 males on four different occasions, the serum levels found after 6 hours ranged from 178 to 1423 ig. per 100 ml., 122 to 1170 ig. per 100 ml., 110 to 1183 ig. per 100 ml., and 114 to 1230 ig. per 100 ml., respectively. These nearly 10-fold variations in serum levels do not, of course, indicate 10-fold variation in need, but they do show that the vitamin when given in relatively large doses does behave very differently in different individuals. [Pg.190]

Returning briefly to the subject of alcoholism and the work done on the subject in the author s laboratory, we may call attention to the fact that alcoholism is often classified as a mental disease. It is induced, in certain susceptible individuals, by a chemical agent, alcohol, the consumption of which in the amounts commonly used is conducive to the production of nutritional deficiencies because alcohol crowds out of the diet foods which yield minerals, amino acids, and vitamins. [Pg.259]

Vitamin Ai (retinol) is derived in mammals by oxidative metabolism of plant-derived dietary carotenoids in the liver, especially -carotene. Green vegetables and rich plant sources such as carrots help to provide us with adequate levels. Oxidative cleavage of the central double bond of -carotene provides two molecules of the aldehyde retinal, which is subsequently reduced to the alcohol retinol. Vitamin Ai is also found in a number of foodstuffs of animal origin, especially eggs and dairy products. Some structurally related compounds, including retinal, are also included in the A group of vitamins. [Pg.40]

Deficiency may occur in infants if no fruits or vegetables are added to their milk formulas. In alcoholics, and in elderly subjects who consume inadequate diets vitamin C deficiencies are frequent. Severe ascorbic acid deficiency is characterized by the syndrome known as scurvy. Its manifestations are generally based on a loss of collagen. Symptoms include hemorrhages, loosening of teeth. In children cellular changes in the long bones occur. [Pg.475]

Fats and oils usually contain fatty acids in their free form as a result of spontaneous hydrolysis of the parent TG compounds. These free fatty acids (FFAs) are usually linear molecules with 4—24 carbon atoms that may be saturated or unsaturated with typically 1-3 C=C double bonds. Other compounds, such as pigments, waxes, sterols, glycolipids, lipoproteins, hydrocarbons, long chain alcohols, carbohydrates and vitamins (E, A and D), can also be found in oils and fats in minor concentrations. [Pg.54]

Other neurological syndromes (e.g., cerebral cortical atrophy, myopathy, cerebellar degeneration) are also associated with alcoholism, but their pathogenesis is less certain than that of nutritional deficiency disorders. Abstinence from alcohol plus vitamin replacement and physical therapy comprise the standard treatment approach for these conditions. [Pg.297]

The acoustic micrograph in Fig. 1.5(a) came from a 5-week-old preparation. It was fixed in alcohol, and stained for alkaline phosphatase and, with von Kossa stain, for biomineral material. The biomineral material of interest here is hydroxyapatite, the principal crystalline mineral constituent of bone. The ordered structure visible within the matrix is not seen with either the light or electron microscopes. But the acoustic microscope can also work perfectly well with unfixed, unstained specimens. Figure 1.5(b) is an acoustic micrograph of matrix and cells from a 17-year-old male. In addition to the standard ingredients of culture medium, these cells were specifically stimulated with beta-glycerolphosphate and a vitamin C preparation. Because the acoustic... [Pg.6]

Malnutrition from dietary deficiency and vitamin deficiencies due to malabsorption are common in alcoholism. [Pg.496]

Cephalosporins that contain a methylthiotetrazole group (eg, cefamandole, cefmetazole, cefotetan, cefoperazone) frequently cause hypoprothrombinemia and bleeding disorders. Administration of vitamin Ki, 10 mg twice weekly, can prevent this. Drugs with the methylthiotetrazole ring can also cause severe disulfiram-like reactions consequently, alcohol and alcohol-containing medications must be avoided. [Pg.993]


See other pages where Vitamin and alcoholics is mentioned: [Pg.263]    [Pg.265]    [Pg.344]    [Pg.344]    [Pg.263]    [Pg.265]    [Pg.344]    [Pg.344]    [Pg.359]    [Pg.368]    [Pg.79]    [Pg.385]    [Pg.391]    [Pg.458]    [Pg.33]    [Pg.154]    [Pg.238]    [Pg.71]    [Pg.532]    [Pg.40]    [Pg.678]    [Pg.1286]    [Pg.207]    [Pg.223]    [Pg.111]    [Pg.199]    [Pg.406]    [Pg.406]    [Pg.27]    [Pg.336]    [Pg.678]    [Pg.1554]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Alcohol vitamin A and

Alcoholism Vitamin

Vitamin alcohol

© 2024 chempedia.info